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Introduction 
Power Shift: How Virtual Power Plants Unlock Cleaner, More Affordable Electricity Systems explores 
the role that virtual power plants (VPPs) can play in reducing costs and emissions from the grid. The report 
includes two novel analyses that explore VPPs’ potential impacts across different scopes, levels of detail, 
and operational assumptions. VPPs’ Role in Affordable, Reliable Decarbonization uses a detailed model 
of a case study power system in 2035 to understand how VPPs inform cost-effective portfolios. VPPs’ 
Nationwide Carbon Savings Potential uses forecasts of load, VPP enrollment, and grid emissions rates to 
simulate VPP operations and calculate a nationwide emissions reduction potential. These analyses apply 
novel approaches to surface new insights about VPPs’ economic and emissions potential; VPPs’ Role in 
Affordable, Reliable Decarbonization compares key outcomes of modeled real-world power systems 
using well-defined VPP technologies; VPPs’ Nationwide Carbon Savings Potential is the first analysis 
we’re aware of that calculates a greenhouse gas emissions impact potential estimate for virtual power 
plants across the United States over the next decade. 
 
These analyses find the following: 
 

• In the VPPs’ Role in Affordable, Reliable Decarbonization, we find: 
o The VPP-Enabled portfolio includes 6.7 GW of cost-effective VPPs across a variety of 

technologies. 
o VPPs almost eliminate the need for new gas capacity, with a 75% or 1.5 gigawatt (GW) 

reduction in new gas capacity compared to the Baseline portfolio. 
o VPPs relax the need to procure additional utility-scale battery storage, although storage 

plays a complementary role with VPPs on the system and the model still adds over 500 MW 
compared to today’s levels. 

o VPPs are key for integrating additional renewables procured 2023–2035 and can help 
reduce the costs of complying with anticipated carbon policies. 

o Compared to the Baseline portfolio, the VPP-Enabled portfolio further reduces carbon 
emissions while saving 20% in generation costs — about $140 per household per year. 

• VPPs’ Nationwide Carbon Savings Potential shows that by shifting load toward low-emissions 
resources, VPP demand flexibility could reduce 2035 US emissions by 12–28 million metric tons, 
2%–4% of project power sector emissions.  

This technical appendix accompanies the main Power Shift report and provides an overview of the data 
sources, methods, and assumptions analyses. 
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Role of VPPs in Affordable, Reliable Decarbonization 

Overview 
To evaluate the impacts of incorporating VPPs into planning, we model optimal resource portfolio 
development — with and without carbon policy and VPPs — for an example Mountain West state in 2035.i 
We model four distinct portfolios: 
 

• Baseline: A counterfactual portfolio in which the Mountain West state does not include a carbon 
emissions signal in resource planning and does not have access to VPPs. 

• VPP-Enabled: A portfolio that allows resource planning software to select VPPs. 
• Baseline, CO2 Policy: A portfolio where a carbon policy is included in planning, but VPPs are not 

available as a candidate resource.ii   
• VPP-Enabled, CO2 Policy: A portfolio that includes the carbon policy and allows resource planning 

software to add VPPs. 
 
Each portfolio begins with the same set of existing resources. A capacity expansion optimization algorithm 
then identifies resource procurements, retirements, and hourly operations that meet load and reliability at 
least cost. We compare system-level outputs across portfolios, including resource mix, generation 
production costs, and emissions to characterize the impacts of including carbon policy and VPPs in 
resource planning. All economic figures are reported in 2021 dollars, with past annual inflation 
adjustments sourced from the US Federal Reserve and a future inflation projection of 2.5% per year.1  
 
We use GenX, an open-source capacity expansion model, to simulate the power system and identify 
optimal scenarios and operations.2 GenX is a configurable electricity resource capacity expansion model, 
developed by researchers at MIT and Princeton, to support analyses of power sector investment. GenX 
software supports many of the functions essential to resource planning, including simulating hourly grid 
operations, accounting for hourly production costs and emissions, and identifying the least-cost portfolio 
of resources to provide power and meet reliability requirements. 
  
We populate our GenX model with inputs from a selection of high-quality, independently validated, and 
industry-standard data sources, including the Energy Information Administration’s Form 860,3 the National 
Renewable Energy Laboratory (NREL)’s Annual Technology Baseline (ATB),4 and NREL Cambium data.5 
Many of these data sets are processed for use in GenX through PowerGenome,6 an open-source tool that 
aggregates and manages publicly available data for use in capacity expansion models. Specific sources 
and assumptions, including those generated by PowerGenome, are provided through the rest of this 
section. 

 
i Generally, we used data from Colorado as the representative Mountain West state for this analysis. However, this analysis 
uses several simplifying assumptions for modeling purposes and therefore is not suitable for drawing specific insights or 
making specific recommendations for Colorado’s energy system. 
ii We model a carbon dispatch signal, based off Xcel’s FERC-approved policy in Order Accepting Tariff Revisions re Public 
Service Company of Colorado under ER23-158 et al., FERC, 2023, 
https://elibrary.ferc.gov/eLibrary/filelist?accession_number=20230117-3032. 
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The Representative System 
First, we establish the demand profile for the 2035 Mountain West System. We provide key parameters and 
their sources in  
Table 1, below: 
 

Table 1. Sources for Key Inputs, Mountain West system. 

Parameter Source 
Hourly Load Shape FERC Form 714 
Annual Non-Electrification Load Growth Energy Information Administration Annual 

Energy Outlook – Reference Case 
Electrification Load Growth NREL Electrification Futures Study 
Gas Fuel Cost From EIA 2023 Annual Energy Outlook – 

Reference Case 
Coal Fuel Cost From EIA 2023 Annual Energy Outlook – 

Reference Case 
 
We use PowerGenome to generate hourly load data in 2035 for the case study system. PowerGenome 
bases its load profiles off historical hourly shapes reported in FERC Form 714 data.7 PowerGenome’s load 
data methodology uses 2012 as a base year, then applies load growth assumptions based on the US 
Energy Information Administration (EIA)’s Annual Energy Outlook (AEO) Reference Case.8 Load growth due 
to electrification is represented using load shapes from the NREL Electrification Futures Study (EFS), using 
the “high” electrification scenario with moderate technological advancement.9  NREL EFS does not 
produce results for the year 2035; for this analysis, we used 2030 outputs for load growth and changing 
load shapes from electrification. 
 
We used a selection of hours from the 2035 analysis year to manage computational demands for this 
analysis. In this case, we use a sample time series of 12 weeklong continuous periods (including 2,016 
hours, or about a quarter of all hours in the year), including the hourly peak demand day. PowerGenome 
creates representative time periods by using a k-means clustering algorithm to identify and assign weights 
to custom-sized sample periods.  Our testing indicated that this sample is large enough to capture the full 
variation in net load, including dunkelflaute periods of protracted low wind and solar output. We use fuel 
price projections from the EIA AEO 2023 Reference Case, Mountain Region.10 We assume fuel prices 
remain constant throughout the year. 
 
Table 2. Sources for Key Inputs, Existing Generation 

Parameter Source 
Existing Generators: Capacity From EIA Forms 860 and 923 
Existing Generators: Operations & 
Maintenance Costs 

US EIA National Energy Modeling System11 

Distributed Generation Forecast NREL 2022 “Low Renewable Energy Cost” 
Standard Scenario12 
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Table 2, above, shows sources for key parameters for existing resources. PowerGenome uses EIA Forms 
923 and 860 to enumerate existing generators and uses EIA’s National Energy Modeling System (NEMS) 
and NREL ATB to estimate operation and maintenance costs.13 We assume that existing generators comply 
with announced retirements dates.14 For distributed generation (i.e., rooftop solar), we assume a trajectory 
based on NREL’s 2022 “Low Renewable Energy Cost” Standard Scenario.15 
 
Table 3. Sources for Key Inputs, Policy Inputs. 

Parameter Source 
Carbon Policy Xcel Colorado January 2023 Social Cost of 

Carbon 
Investment Tax Credit Inflation Reduction Act 
Production Tax Credit Inflation Reduction Act 
Planning Reserve Margin Xcel 2021 Energy Resources Plan 

 

Federal and state policies, along with planning requirements, are summarized above in Table 3. We 
represent relevant policies at the state and federal levels. In the scenarios that use carbon policy, we use a 
social cost of carbon proposed by Xcel Colorado and approved by FERC in January 2023. iii To incorporate 
the impact of the Inflation Reduction Act, we assume any new builds of battery storage, geothermal, and 
nuclear receive a 30% investment tax credit (ITC), represented as a reduction in capital cost. iv,16  We 
assume wind and solar developers opt for the production tax credit (PTC) instead, which results in a 
benefit of $28.82 per megawatt-hour (MWh) applied to all generation from new builds.v,17 We use a 
planning reserve margin (PRM) of 18%, consistent with other Mountain West utilities. 18 GenX enforces the 
reserve margin constraint on an hourly basis, yielding stricter reliability requirements than a planning 
reserve margin assessed over peak hours only. 
 
Capacity Expansion: Candidate Utility-Scale Resources 

 
We include seven candidate utility-scale resources: gas-fired combined cycles (gas CC), gas-fired 
combustion turbines (gas CT), advanced nuclear, advanced geothermal, battery storage, wind, and solar. 
Key technical and financial assumptions, along with their sources, are shown in Table 4, below. Additional 
operational inputs are sourced through PowerGenome,19 supplemented with NREL ATB. 
 
Table 4. Candidate Utility-Scale Resources 

Name Description 
Unit 
Capacity 
(MW) 

Capital 
Cost 
($/kW)
* 

Capital 
Recovery 
Factor 
(%/y)† 

Fixed 
O&M 
($/kW-y)* 

Variable 
O&M 
($/MWh)* 

 
iii We model a carbon dispatch signal, based off Xcel’s FERC-approved policy in Order Accepting Tariff Revisions re Public 
Service Company of Colorado under ER23-158 et al., FERC, 2023, 
https://elibrary.ferc.gov/eLibrary/filelist?accession_number=20230117-3032. 
iv Assuming prevailing wage and apprenticeship requirements are met. 
v 2.75¢/kWh, adjusted for inflation. 

http://www.rmi.org/
https://elibrary.ferc.gov/eLibrary/filelist?accession_number=20230117-3032


Power Shift: Technical Appendix / Electricity www.rmi.org / 6 

 
 

 
 

Gas 
Combined 
Cycle (CC) 

Combined cycle F-
Frame  

500 $1,172 8.88% $29.0 $1.86 

Gas 
Combustion 
Turbine (CT) 

Simple cycle F-
Frame  

100 $1,058 8.88% $23.0 $6.44 

Nuclear 
AP1000 
pressurized water 
reactor  

500 $5,515 8.08% $152.1 $2.47 

Geothermal 
Hydrothermal 
Flash. 

25 $4,252 8.88% $107.9 $0 

Battery Lithium Ion  1vi $418vii 11.68% 
$7.4 (plus 
$6.3 per 
MWh-y) 

$0 

Wind 
Land-based, Class 
4 

1 $1,198 8.88% $27.6 $0 

Solar 
Utility-scale, Class 
4  

1 $1,080 8.88% $18.5 $0 

Source: 2023 Annual Technology Baseline (ATB), NREL, 2023. 
* Consistent with GenX methodology, values are averaged between 2023 and 2035 analysis year. Capital cost 
values reflect investment tax credit for nuclear, geothermal, and energy storage capital costs. Variable O&M values 
do not reflect production tax credit for wind and solar. 
† Calculated using an 8% discount rate. 

 

Capacity Expansion: Virtual Power Plants 

 
We also include virtual power plants as a selectable resource for capacity expansion. We model eight 
types of sector-specific flexible demand (e.g., residential space heating and cooling), using operational 
characteristics from PowerGenome and NREL EFS.20 We supplement PowerGenome and NREL EFS 
technical inputs with cost assumption data from the Brattle Group’s Real Reliability report and other 
sources. We also apply a de minimis variable cost ($1/MWh) to all technologies, which limits frequency of 
VPP dispatch. We also model behind-the-meter (BTM) battery storage as an available technology for virtual 
power plants. We assume 500 MW of three-hour duration storage is available to the case study system. To 
arrive at this number, we first estimate cumulative national BTM battery storage installations of 36.4 GW by 
2035, interpolating the 2023 and 2028 forecasts provided in Wood Mackenzie’s March 2024 US Energy 
Storage Monitor,21 holding annual additions constant after 2028. We scale this availability down to 500 
MW, using Colorado’s approximate share of national retail energy sales.22 We apply a de minimis variable 
cost to storage charge and discharge, consistent with that used for utility-scale storage. Table 5 below 
shows the key operational assumptions made for each VPP technology.  
Table 5. VPP Technical Potential and Operational Characteristics 

 
vi Due to the modular nature of battery storage, wind, and solar, we assume procurement is possible to the nearest 
megawatt. 
vii Based on capital costs of $206/kW plus $177/kWh (taken from NREL ATB 2023 v2, Moderate Technology Innovation 
Scenario, net of the ITC). Electricity Annual Technology Baseline (ATB) Data Download, NREL, 
https://atb.nrel.gov/electricity/2023/data. 

http://www.rmi.org/
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Name 
Technical Potential 
(MW) 

Shiftable Demand 
(GWh per year) 

Potential 
Demand Shift 
(hours)23 

Residential Space Heating 
And Cooling 
 

1,324 5,439 2 

Residential Water Heating 284 2,119 8 
Commercial Space Heating 
and Cooling 

743 1,623 2 

Commercial Water Heating 9 72 4 
Light-Duty Vehicle 
Managed Charging 

3,548 8,315 8 

Medium-Duty Vehicle 
Managed Charging 

118 739 7 

Heavy-Duty Vehicle 
Managed Charging 

234 1,466 4 

Bus Managed Charging 5 32 4 
BTM Battery Storage 500 MW/  

1,500 MWh 
n/a n/a 

Source: Sun et al., Electrification Futures Study, 2020 

Table 6 below shows key financial assumptions made for each VPP technology. To model VPPs in capacity 
expansion context, we derive annualized per-MW costs for each measure (comparable to the annualized 
capital cost of a conventional generator) following the methodology used in the Brattle Group’s Real 
Reliability report.24 We group VPP demand flexibility technologies into three buckets: space heating and 
cooling, water heating, and vehicle managed charging. We begin with annualized program costs, given in $ 
per participant per year. These costs are assumed to be constant over the measure lifetime. Next, we 
calculate the peak-coincident per-participant demand reduction from each measure. Dividing per-
participant program cost by per-participant gross peak-coincident demand reduction yields the annual 
gross cost of peak-coincident demand reduction, in dollars per kilowatt-year. We assume that each 
kilowatt of peak demand reduction capacity also reduces costs associated with transmission and 
distribution (T&D) system investments.  Subtracting T&D benefits from the cost of demand reduction yields 
net cost of peak-coincident demand reduction.  

Finally, we adjust the denominator from peak-coincident demand reduction capacity to non-peak-
coincident demand reduction capacity to be consistent with cost expressions for other technologies. We 
do this by using a peak coincidence factor, which is each technology’s available capacity at the system’s 
peak demand hour divided by each technology’s maximum single-hour available capacity in the evaluation 
year. 
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Table 6. VPP Economic and Financial Inputs by Technology 

Parameter 
Space Heating 

and Cooling 
Water 

Heating 

Vehicle 
Managed 
Charging 

BTM Battery 
Storage 

Program Cost25 
($/participant-y) 

$64.9 $81.1 $93.5 $610.7 

Peak-Coincident Demand 
Reduction (kW/participant)  

1.00viii,26 0.51ix,27 0.96x 7.00 

Gross Cost  
($/peak-coincident kW-y) 

$64.9 $159 $97.8 $87.2 

T&D Deferral Benefitxi 
($/peak-coincident kW-y) 

$45.0 $45.0 $45.0 $45.0 

Net Costxii 
($/peak-coincident kW-y) 

$19.9 $114.0 $52.8 $42.2 

Peak Coincidence Factorxiii 48% 49% 100% 100% 
Net Costxiv 
($/non-coincident kW-y) 

$9.5 $55.9 $52.8 $42.2 

GenX Configuration 
We run capacity expansion using GenX version 0.3.5, modeling linearized unit commitment and not 
explicitly modeling operating reserves. We use the open-source HiGHS solver.28 
 
To manage computational load for optimization, we reduce the hours evaluated in the analysis year using 
PowerGenome. PowerGenome uses a clustering algorithm to construct a representative sample of twelve 
weeklong periods, rather than running the model for every hour of the year. Each period is weighted and 
aggregated up to annual results. The sample includes the peak load hour. 

Limitations 
We discuss some limitations of this analysis below. 
 

  

 
viii We assume a summer-peaking system.  
ix We assume high-end load reductions. 
x Consistent with The Value of Virtual Power Volume II: Technical Appendix, The Brattle Group, 2023, 
https://www.brattle.com/wp-content/uploads/2023/04/Real-Reliability-The-Value-of-Virtual-Power-Technical-
Appendix_5.3.2023.pdf, we use the US Department of Energy’s EVI Pro Lite tool to generate EV charging load profiles, 
https://afdc.energy.gov/evi-pro-lite. We use Colorado data, assuming 75% of the EV fleet is all-electric and 90% of 
participants respond to calls for load shifting. 
xi Assuming T&D deferral benefits of $50/kW-y, adjusted downward to account for imperfect VPP availability. 
xii Gross cost minus T&D deferral benefit. 
xiii Calculated as measure output (% of capacity) during system peak hour. 
xiv For modeling, net cost must be converted from peak-coincident kW in the denominator to non-coincident peak kW 
(analogous to converting from $/kW UCAP to $/kW ICAP). 

http://www.rmi.org/
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GenX Capabilities 

 
• GenX is primarily a bulk-scale power modeling system, and this analysis does not explicitly 

consider operations and investments in the distribution and transmission systems. We have 
represented transmission and distribution system benefits indirectly by using an average per-
kilowatt T&D benefits value and accounting for T&D benefits in the net cost of VPPs. However, 
additional analysis on a case-by-case basis would be necessary to evaluate T&D benefits posed by 
VPPs. 

• GenX does not explicitly conduct reliability assessments; instead, reliability is ensured by portfolio 
resources meeting a planning reserve margin every hour. GenX credits each resource’s 
contribution to the resource adequacy requirement as the resource’s nameplate capacity, 
multiplied by its energy availability, multiplied by its outage availability. For variable energy, 
demand flexibility, and energy storage resources, their contribution to resource adequacy is 
represented as the generation in each hour multiplied by an outage availability factor. The sum of 
resource adequacy contributions across all resources must be greater than or equal to system 
energy demand plus the planning reserve margin in every analysis hour. Table 7 shows each 
resource’s contribution to the resource adequacy requirement. 

Table 7. Resource Adequacy Contribution by Resource (Percent Nameplate Capacity). 

Resource 
Average Hourly 
Energy 
Availability 

Outage 
Availability 
Factor 

Gas Combined Cycle (CC) 100% 95% 
Gas Combustion Turbine 100% 95% 
Nuclear 100% 97% 
Geothermal 100% 95% 
Battery Variablexv 90% 
Windxvi 28%-45% 97.5% 
Solar 28%-29% 97.5% 
Residential Space Heating and 
Coolingxvii 

22% 90% 

Residential Water Heating 32% 90% 
Commercial Space Heating and Cooling 12% 90% 
Commercial Water Heating 52% 90% 
Light-Duty Vehicle Managed Charging 27% 90% 

 
xv For batteries, average energy availability is dynamic, depending on state of charge. 
xvi We use PowerGenome’s built-in wind and solar generation profile aggregation tools to capture the diversity of wind and 
solar resources across Colorado. We sort potential sites into bins based on resource quality. Each bin is constrained in 
capacity expansion by maximum MW additions. As shown, the quality of wind resources varies across the state (from 29% 
to 48% annual capacity factor), while solar is much more consistent (27%–28% annual capacity factor). 
xvii VPP measure hourly availability comes from PowerGenome’s analysis of NREL Electrification Futures Study data. We 
assume a 90% outage availability factor (i.e., that 10% of available resources participating in a VPP will fail to respond to a 
given call for capacity). 

http://www.rmi.org/
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Medium-Duty Vehicle Managed 
Charging 

72% 90% 

Heavy-Duty Vehicle Managed Charging 72% 90% 
Bus Managed Charging 72% 90% 
BTM Battery Storage Variable% 90% 

Sources: PowerGenome and RMI analysis. 

Scenario Definition 

 

• The GenX model considers only the least-cost annualized system in 2035 and does not consider 
the least-cost pathway to 2035 or any requirements or considerations after the year 2035. We also 
assume that planners have perfect foresight into market conditions in this model. 

• The modeled Mountain West state is an islanded system, without transmission interconnections to 
neighboring regions. 

Detailed Results 

Table 8 and Table 9 below show detailed results across the analytical scenarios.  
 
Table 8. 2035 Capacity Mix (MW), by Portfolio 

 2024 2035 

 Existing System Baseline 
VPP-

Enabled 
Baseline, 

CO2 Policy 

VPP-
Enabled, 

CO2 Policy 
Coal 3,804 0 0 0 0 
Gas CC 3,306 5,306 3,806 4,806 3,306 
Gas CT 3,498 3,016 3,016 3,016 3,016 
Biomass 12 11 11 11 11 
Hydro 531 545 545 545 545 
Wind 5,136 15,099 16,486 19,514 20,858 
Utility Solar 2,874 4,952 3,787 5,958 5,045 
Distributed Solar 746 1,995 1,995 1,995 1,995 
Pumped Storage 581 581 581 581 581 
Utility-Scale 
Battery Storage 

240 3,855 839 4,254 1,269 

VPPs (Residential) 0 0 1,609 0 1,609 
VPPs 
(Commercial) 

0 0 753 0 753 

VPPs 
(Transportation) 

0 0 3,809 0 3,809 

VPPs (BTM Battery 
Storage) 

0 0 500 0 500 

Source: RMI analysis. 
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Table 9. Generation Costs and Emissions by Scenario 

 
Baseline 

VPP-
Enabled 

Baseline, CO2 
Policy 

VPP-Enabled, 
CO2 Policy 

Net Production Costs  
($ million/y) 

$2,016 $1,619 $2,115 $1,682 

Carbon Emissions  
(MMT CO2/y) 

5.35 4.97 3.08 2.81 

Source: RMI analysis. 

 

VPPs’ Nationwide Carbon Savings Potential 

Overview 
In the VPPs’ Nationwide Carbon Savings Potential analysis, we use third-party projections to estimate 
VPP capacity by technology and state across the Continental United States from 2024 to 2040. Then, we 
use a simplified model of grid operations and VPP dispatch to identify shifts in demand from VPP dispatch 
that would avoid the most carbon emissions compared to a status quo without shifts in demand. We use 
emissions-minimizing VPP operations across states from 2024 to 2040 to estimate VPP emissions 
reduction potential from 2024 to 2035. This analysis provides directional insights into the magnitude of 
emissions reduction potential for VPPs and provides an opportunity to explore how VPPs’ role might shift 
across years, seasons, and regions.  
 
The VPPs’ Nationwide Carbon Savings Potential study takes the following steps: 
 

1. Project VPP Capacity: We use hourly sub-sector load for each state in the Continental United 
States in 2024, 2030, and 2040 from the National Renewable Energy Laboratory (NREL)’s 
Electrification Futures Study.29 

2. Define VPP Potential: We characterize flexible demand as a portion of total subsector demand, 
which varies as a function of study year, increasing over time. 

3. Project Grid Emissions Signals: We use hourly, state-level emissions rates from NREL 
Cambium’s “95 percent decarbonization by 2050” scenario to define the dispatch signal and 
emissions factor for this analysis.30 

4. Identify Demand Shift that Maximizes Avoided Emissions: We use a dispatch algorithm to shift 
demand to reduce power sector emissions, within constraints that reflect broader power system 
requirements. 

5. Calculate Total Emissions Reduction, 2024–2035. We calculate emissions savings for analysis 
years 2024, 2030, and 2040 and interpolate between these years to provide annual emissions 
savings. 

This analysis takes several foundational data inputs from the National Renewable Energy Laboratory’s 
Electrification Futures Study (EFS), a 2017–2021 study that explored the impacts of widespread 
electrification and demand flexibility on the US economy.31 As described below, NREL EFS datasets inform 
the underlying hourly load data and provide demand flexibility capabilities used in this analysis. 

http://www.rmi.org/
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We elaborate on each of these steps below, then describe the simplifying assumptions of this analysis. 
 
NREL EFS includes projections for 2018, 2020, 2024, 2030, 2040, and 2050. Across all the steps below, we 
conduct our analysis using the 2024, 2030, and 2040 analysis years, then linearly interpolate outputs 
between analysis years. Results reported for 2035 are linearly interpolated between analysis outputs in 
2030 and 2040. 

Project VPP Capacity 
 
For this analysis, VPP technologies fall into two categories. The flexible demand category contains all 
technologies that typically represent electric load, but can shift the time and nature of that demand (for the 
purposes of this study, we examine managed electric vehicle charging only and not electric vehicle 
discharge onto the grid; for that reason, we place it in the flexible demand category). The distributed 
storage category contains only distributed storage installations. We project potential VPP capacity across 
US states through 2040 with distinct methods for flexible demand technologies and distributed storage 
technologies. 
 

Flexible Demand 
 
We use hourly load profiles defined at the state and sub-sector (e.g., residential heating, ventilation, and 
air conditioning) developed by NREL for Electrification Futures Study: Methodological Approaches for 
Assessing Long-Term Power System Impacts of End-Use Electrification, which in turn uses a combination 
of reference load forecasts from the 2018 release of NREL’s Regional Energy Deployment System (ReEDS) 
and demand-side flexibility and electrification forecasts using the EnergyPATHWAYS tool.32 These load 
profiles represent the maximum amount of load for each subsector that could theoretically be managed by 
a virtual power plant, subject to the limitations described in Define VPP Potential below. NREL EFS 
includes profiles for the following sub-sectors: 
 

• Commercial 
o Space Heating and Cooling 
o Water Heating 
o Other 

• Industrial 
o Machine Drives 
o Process Heat 
o Other 

• Residential 
o Space Heating and Cooling 
o Water Heating 
o Clothes and dish washing/drying 
o Other 

• Transportation 
o Light-duty vehicles 
o Medium-duty vehicles 
o Heavy-duty vehicles 

http://www.rmi.org/
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Together, the load profiles represent total hourly load for each state, which may be shifted by charging and 
discharging distributed storage under a VPP. For this analysis, we use NREL EFS’s “High” electrification 
and “Moderate” technology advancement scenario to examine a highly electrified future scenario, while 
using a central projection on end-use technologies. This scenario results in a 1.6% compound annual 
growth rate of electricity load, 2016–2050,33 with transportation representing most of the increase in 
annual electricity demand. NREL Electrification Futures Study load scenarios provide hourly load at the 
state- and subsector-level, which allows for a detailed, state-level characterization of daily, seasonal, and 
sub-sector dynamics across states and regions. To manage computational requirements for this analysis, 
we calculate average load for each hour of the day to construct an “average day” for each month, state, 
and analysis year. These “average days” also yield loads and dispatch patterns that are more 
representative of typical power sector dynamics of the month, state, and year, rather than representing 
weather on a single day. 
 

Distributed Storage 
 
NREL EFS does not project distributed storage deployment. We project distributed storage using Wood 
Mackenzie’s U.S. Energy Storage Monitor 2024 Q1, assuming that the projected annual distributed storage 
deployment in 2028 is sustained through 2040.34 We allocate distributed storage across US states, 
weighted against each state’s share of total US load in NREL Cambium’s “95 percent decarbonization by 
2050” mid-case scenario. 

Define VPP Potential 

Flexible Demand 

Starting from subsector-level hourly load defined in the previous section, we calculate the proportion that 
is technically capable of being managed through a VPP, the limits and characteristics of VPP dispatch 
across technologies, and the trajectory of VPP deployment across states and over time. Figure 1, below, 
provides a flow chart showing assumptions applied to subsector load to yield flexible demand at the sub-
sector level. 
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Figure 1. Flow Chart of Assumptions Used to Determine Final Flexible (VPP-Enrolled) Load Used in Modeling.  

 

 
Source: Adapted from Sun et al., Electrification Futures Study, 2020, p. 30. 

Below, we provide a description for each of the data elements included in Figure 1. 

Electrified Load by Subsector 

Hourly subsector load, described in the Project VPP Capacity section above. 

Demand Response (DR) Potential within Subsector 

We apply a factor representing technical potential for flexibility for each sub-sector (expressed as a 
percentage of subsector load) based on the specific technical and behavioral considerations of that 
technology. For example, electric vehicle charging can be relatively easily shifted, but space heating and 
cooling is more limited. Technical potential for each sub-sector does not vary over time or across 
geographies. 

DR Timing 

We characterize the window of time each day when each sub-sector is capable of shifting demand. For this 
analysis, we assumed VPP flexible demand technologies were capable of shifting demand at all hours. 

DR Direction 

We set the direction that load can be shifted: Depending on the sub-sector, demand may only be able to be 
delayed or only brought forward in time, or either. 

DR Duration 

We identify the maximum duration of the shift in demand possible for each sub-sector. Depending on the 
sub-sector, demand may be shifted from one up to eight hours. 

http://www.rmi.org/


Power Shift: Technical Appendix / Electricity www.rmi.org / 15 

 
 

 
 

Customer Participation 

Finally, we define the portion of all customers that have enrolled in a virtual power plant for each sub-
sector, which is the percentage of technically flexible demand for each sub-sector that is actually available 
to shift load. This analysis uses the “Enhanced” customer participation scenario from NREL EFS, where 
participation increases linearly from 5%, 6%, or 7% in 2018 (depending on sub-sector) to 60% or 90% in 
2050.35 
 
Equation 1, below, shows the steps needed to calculate each state, year, and sub-sector’s hourly flexible 
load profile from its total load profile. 
 
Equation 1. Calculating sub-sector flexible load profiles 

 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦𝑒𝑎𝑟 𝑦, 𝑠𝑡𝑎𝑡𝑒 𝑠, 𝑠𝑢𝑏𝑠𝑒𝑐𝑡𝑜𝑟 𝑡, 𝑚𝑜𝑛𝑡ℎ 𝑖, 𝑎𝑛𝑑 ℎ𝑜𝑢𝑟 𝑗, 

 
𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝑙𝑜𝑎𝑑 (𝑀𝑊ℎ)𝑦,𝑠,𝑡,𝑖,𝑗

= 𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 (𝑀𝑊ℎ)𝑦,𝑠,𝑡,𝑖,𝑗 ∗ 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%)𝑡 ∗ 𝑉𝑃𝑃 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 (%)𝑡,𝑦  
 

Table 10, below, shows each of these parameters by sub-sector. We add one more parameter, called “DR 
allowed peak factor” that constrains the ability for demand shifts to exceed existing subsector-level peak 
demand. This parameter will be discussed in greater detail in the Execute Demand Flexibility Dispatch 
section, below. 
 
Table 10. VPP Demand Flexibility Parameters by Subsector 

Sector Subsector 
DR 

Technical 
Potential 

DR 
Direction 

DR 
Duration 

Allowed 
Peak 

Factor 

VPP Enrollment 

2018 
2050, 

Sustained 
Enrollment 

2050, 
Slow 

Enrollment 

Commercial 
Space Heating & 
Cooling 

100% Both 2* 1.25 5% 60% 20% 

Commercial Water Heating 100% Both 4 1.25 5% 60% 20% 

Commercial Other 5%* 
Backward 
only 

1* 1.25 5% 60% 20% 

Industrial Machine Drives 36% Both 1 1 7% 60% 20% 

Industrial Process Heat 60% Both 1 1 7% 60% 20% 

Industrial Other 25%* Both 1* 1 7% 60% 20% 

Residential 
Clothes and dish 
washing/drying 

100% Both 8 1.5 6% 60% 20% 

Residential Other 5%* Both 2* 1.5 6% 60% 20% 

Residential 
Space heating & 
cooling 

100% Both 2* 1.25 6% 60% 20% 

Residential Water heating 100% Both 8 1.5 6% 60% 20% 

Transportation 
Light-duty 
vehicles 

75% Both 8 1.25 6% 90% 20% 

Transportation 
Medium-duty 
trucks 

100% 
Forward 
only 

6.5 1.25 5% 60% 20% 
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Transportation 
Heavy-duty 
trucks 

100% 
Forward 
only 

4.4 1.25 5% 60% 20% 

Source: Sun et al., Electrification Futures Study, 2020, Table 2, Table D-2, Table D-3, Table D-4, Table D-5. 
* For technical parameters of “Other” subsectors, we made conservative assumptions based on available sector-wide information. 
We also made selected reasonable adjustments to DR duration for specific subsectors. 

We use flexible demand profiles for each sub-sector to calculate projected VPP capacity by sub-sector 
and technology. VPP capacity represents the greatest single hour of demand (not coincident with any 
system peak demand) for that sub-sector across month-average hours in the analysis year. This is a more 
conservative approach than reporting the greatest single hour of demand across all hours in the analysis 
year and is more consistent with the rest of our analysis.  

Distributed Storage 
We assume that distributed storage enrollment in VPPs is roughly consistent with other technologies in 
2024 (6%), and enrollment linearly increases to 60% by 2050, in line with NREL EFS’s “Enhanced” 
enrollment trajectory. We assume that distributed storage installations have an average duration of three 
hours, coincident with the Brattle Real Reliability study and the approximate duration of the Tesla 
Powerwall.36 We assume that distributed storage is available to dispatch at all hours.  

Project Grid Emissions Signals 
 
Emissions rates reflect the amount of greenhouse gas emissions emitted (typically in kilograms of CO2-
equivalent greenhouse gas) per megawatt-hour generated or consumed. 
 
We use hourly grid emissions rates from NREL’s 2022 Cambium data set.37 We use the “95 percent 
decarbonization by 2050” scenario for US power sector emissions, which generally results in declining 
emissions rates over time. 
 
We use three hourly emissions rates from NREL Cambium data: 
 

• Average Emissions Rate (AER): The average emissions rate is calculated by dividing total 
generation in each hour by total greenhouse gases emitted in that hour. This value reflects hourly 
total energy mix but does not provide information on the impact changes to demand would have on 
the generation mix. 

• Short-Run Marginal Emissions Rate (SMER): The short-run marginal emissions rate represents 
the emissions impact of increasing or decreasing demand by a marginal amount, which would 
result in either increasing or decreasing generation from the marginal unit based on merit dispatch 
order at that time. The marginal unit is often, but not always, the most expensive and most carbon-
intensive unit currently generating electricity. The short-run marginal emissions rate is equal to the 
emissions rate of the marginal unit before any VPP-driven shifts in demand. 

• Long-Run Marginal Emissions Rate (LMER): The long-run marginal emissions rate has been 
recently developed by NREL and is “an estimate of the rate of emissions that would be either 
induced or avoided by a change in electric demand, taking into account how the change could 
influence both the operation as well as the structure of the grid (i.e., the building and retiring of 
capital assets, such as generators and transmission lines).”38 Put another way, the long-run 
marginal emissions rate includes the marginal change in load’s impact on how the grid operates 

http://www.rmi.org/


Power Shift: Technical Appendix / Electricity www.rmi.org / 17 

 
 

 
 

today and its impact on the most economic portfolio of future resources to be built. This emissions 
rate assumes that changes to load are fixed and permanent. 

Choosing a Dispatch Signal and Emissions Factor 

 
We use emissions rates in this analysis to perform two distinct functions: 
 

• The dispatch signal is used by the dispatch algorithm to identify the most emissions-effective 
shift in demand. 

• The emissions factor is used to calculate total emissions before and after demand shift and 
quantify the total amount of emissions avoided through use of demand flexibility. 

These functions can be played by the same emissions rates or different emissions rates, depending on the 
goals and priorities of the analysis. An analysis might use different dispatch signals and emissions factors 
to reflect the challenges of communicating about grid conditions to VPPs in real time. Information used to 
direct dispatch must be available to the VPP in real time, must be simple enough to calculate and 
communicate, and may ultimately differ from the aggregated impacts to emissions based on shifting 
demand. For most of our analysis outputs, we use the same emissions rate as the dispatch signal and 
emissions factor. 
 
A robust scholarly discussion continues around the identification of the most appropriate emissions signal 
to use for real-time emissions accounting and unit dispatch.39 We do not resolve that discussion, and a 
detailed discussion of the relative advantages and disadvantages of these emissions rates is outside of the 
scope of this technical appendix. This analysis is, however, responsive to the following dynamics: 
 

• Average emissions rates do not accurately reflect the implications of increases or decreases to 
demand, in part because zero-marginal-cost resources such as renewables are not responsive to 
marginal shifts in demand. This issue grows more pronounced as renewables become a greater 
part of the electricity mix. 

• Evaluating demand shifts against a short-run marginal emissions rate (and to a lesser extent an 
average emissions rate) may drive VPP operations that reduce emissions based on the grid’s state 
today, but may not reduce emissions if adopted in the long run. For example, shifting vehicle 
charging from evening peak demand to overnight hours may reduce emissions by avoiding the use 
of high-emissions peaking plants, but overnight hours may be more difficult to decarbonize in the 
long run than mid-day hours. Where possible, this analysis attempts to model demand shifts that 
have short- and long-term emissions benefits by using long-run marginal emissions rates as 
dispatch signals. 

• Marginal emissions rates become less accurate for characterizing changes in demand as the 
magnitudes of changes to demand increase. In this analysis, flexible demand can reach up to 15% 
of hourly demand. Marginal emissions rates may not adequately describe the change to system 
dynamics applied by shifting demand at this magnitude. 

• Long-run marginal emissions rates may not be appropriate for estimating emissions reductions in 
the short term, because virtual power plants may not yet be integrated into resource portfolio 
development decisions. 

http://www.rmi.org/


Power Shift: Technical Appendix / Electricity www.rmi.org / 18 

 
 

 
 

We develop multiple emissions reduction estimates, using multiple sets of emissions signals and dispatch 
factors, to execute VPP dispatch and quantify emissions reductions. Error! Reference source not found., 
below, summarizes our dispatch signal and emissions factor approach for low, moderate, and high 
estimates. 
 
Table 11. Dispatch Signal and Emissions Factor by Estimate Level, 2024–2040. 

Estimate 
Level 

2024 2030 2040 
Dispatch 

Signal 
Emissions 

Factor 
Dispatch 

Signal 
Emissions 

Factor 
Dispatch 

Signal 
Emissions 

Factor 
Low AER AER AER AER AER AER 
Moderate LMER LMER LMER LMER LMER LMER 

High SMER 
LMER-
SMER 

average 
SMER 

LMER-
SMER 

average 
LMER 

LMER-
SMER 

average 
Source: RMI Analysis. 

We made the following decisions in defining our approach to low, moderate, and high estimates for 
emissions impact. 
 

• The low estimate uses an average emissions rate (AER) for the dispatch signal and emissions factor 
in 2024–2040. This approach represents a reasonable minimum estimate for emissions impacts of 
VPPs. 

• The moderate estimate uses long-run marginal emissions rates (LMER) for the dispatch signal and 
emissions factor in 2024–2040. This approach represents a reasonable expectation of emissions 
impact of VPPs when VPPs are integrated into power sector operations and planning. 

• The high estimate uses the short-run marginal emissions rates (SMER) for 2030 and a long-run 
marginal emissions rate (LMER) in 2040, and an average of LMER and SMER as emissions factors 
from 2024 to 2040. This approach represents an attempt to incorporate the ability for smart 
demand flexibility dispatch to continue to target high-emissions units and the grid planning value of 
additional available demand flexibility. 

Identify Demand Shift that Maximizes Avoided Emissions 
 
This analysis uses different methods for shifting demand using demand flexibility and distributed storage. 
Demand flexibility shifts load, followed by distributed storage. 
 

Flexible Demand 
 
We use a dispatch algorithm, based on that used in NREL EFS’s Operational Analysis of U.S. Power 
Systems with Increased Electrification and Demand-Side Flexibility and developed specifically for this 
analysis,40 to simulate emissions-minimizing shifts in demand by VPP demand flexibility and distributed 
storage. The algorithm shifts flexible demand under several constraints: 
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• System Peak. Shifts in demand from VPPs cannot create a new annual state-level peak in demand 
(all-subsector flexible load plus inflexible load). Load in every hour after all demand has been 
shifted by VPPs must be less than or equal to the existing annual peak. 

• Subsector Peak. Shifts in demand from VPPs can create a peak in sub-sector demand but cannot 
exceed the allowed peak factor shown above in Table 10. This is to prevent the predicted capacity 
of devices from being exceeded in a given hour.  

• Demand Flexibility Characteristics. For each subsector, demand shifts are subject to the specific 
DR Direction and DR Duration described in Table 10. The DR Duration constraint is applied using 
the inequality shown in Equation 2. 

Equation 2. DR Duration constraint for each subsector. 

 

𝐷𝑅 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ𝑜𝑢𝑟𝑠) ≥ ∑
𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝐿𝑜𝑎𝑑 𝑆ℎ𝑖𝑓𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐻𝑜𝑢𝑟 𝑖 (𝑀𝑊ℎ) ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑜𝑢𝑟𝑠 𝑆ℎ𝑖𝑓𝑡𝑒𝑑(ℎ𝑜𝑢𝑟𝑠)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝐻𝑜𝑢𝑟 𝑖 (𝑀𝑊ℎ)

24

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ ℎ𝑜𝑢𝑟 𝑖=1

 

 

To simulate grid operations with active use of demand flexibility, we assume two flexibility calls daily for 
each technology. 
 
For a given state, year, and month, the optimization algorithm evaluates the emissions effectiveness for 
every possible demand shift for a single subsector (e.g., shifting water heating load from 5 p.m. to 4 p.m., 6 
p.m. to 8 p.m., or any other shift). The definition of emissions effectiveness is provided in Equation 3, 
below.  
 
Equation 3. Emissions effectiveness of shifting load from one hour to another. 

 

𝐹𝑜𝑟 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 ℎ𝑜𝑢𝑟 𝑎 𝑡𝑜 ℎ𝑜𝑢𝑟 𝑏: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑎,𝑏 =
∆ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑎,𝑏  (

𝑘𝑔 𝐶𝑂2𝑒
𝑀𝑊ℎ

) ∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝑙𝑜𝑎𝑑 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑎(𝑀𝑊ℎ)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑜𝑢𝑟𝑠𝑎,𝑏(ℎ𝑜𝑢𝑟𝑠 𝑠ℎ𝑖𝑓𝑡𝑒𝑑)
 

 
By executing demand shifts with the highest effectiveness, the VPP maximizes avoided emissions under 
the constraints described in Equation 2. Emissions effectiveness is weighted by flexible load available 
because the duration constraint on shifting demand applies to the number of hours that demand is shifted, 
rather than the amount of energy shifted across hours. Emissions effectiveness identifies demand shifts 
with a large difference in emissions rates, hours with a large amount of demand available to shift, and 
demand shifts that are relatively close together across time. 
 
For each subsector, the VPP shifts demand based on the identified hour-to-hour with the highest 
effectiveness until reaching one of the constraints described above (e.g., the DR Duration constraint is 
reached, or any additional shifting would create an unacceptable system or sub-sector peak). The VPP 
then attempts the demand shift with the next-highest emissions effectiveness. The VPP iterates through 
emissions-effective demand shifts, from most effective to least effective, until the DR Duration constraint 
is reached for that subsector, and no more shifts are possible. Then, we proceed to the next VPP subsector 
in the current state, year, and month. For each state-year-month, VPP demand shifts begin with 

http://www.rmi.org/


Power Shift: Technical Appendix / Electricity www.rmi.org / 20 

 
 

 
 

subsectors with lower DR Duration (e.g., space heating and cooling) and progresses to the subsectors with 
higher DR durations (e.g., managed electric vehicle charging). 
 
Figure 2, below, shows projected system load and VPP dispatch in New Mexico in August 2040. 
 
Figure 2. Projected System Average Hourly Load and VPP Dispatch (New Mexico, August 2040).  

 
Sources: Pieter Gagnon, Brady Cowiestoll, and Marty Schwartz, Cambium 2022 Data, NREL, 2023; and RMI analysis. 

 
The dispatch signal, which in this case is the long-run marginal emissions rate, is shown in yellow. It shows 
a dip in daylight hours, when solar energy is more plentiful, and a narrow peak in the evening during system 
peak net demand. The dark blue area shows inflexible load, which is load that is either technically not 
capable of shifting with VPP dispatch or is not enrolled in a VPP. The light blue area shows load available 
for shifting because it’s enrolled in a VPP. Gray areas represent demand that has been shifted to a different 
time of day, and green areas show where the demand has been shifted to. Together, the VPPs shift load 
from the evening peak toward afternoon daylight hours while avoiding the creation of a new system-wide 
peak. Some mid-evening demand is also shifted to later in the evening and some morning demand is 
shifted into high-solar daylight hours. 
 

Distributed Storage 
 
Unlike flexible demand VPP technologies, which shift demand associated with their own usage, distributed 
storage instead charges and discharges from the grid. In this analysis, distributed storage shifts aggregated 
demand based on available capacity and incorporating all planned flexible demand VPP shifts.  
 
The methodology for shifting grid demand with distributed storage is relatively simple compared to flexible 
demand VPP technologies. Distributed storage charges at its nameplate capacity (increasing total grid 

http://www.rmi.org/


Power Shift: Technical Appendix / Electricity www.rmi.org / 21 

 
 

 
 

demand) during the three least emissions-intensive hours in the average day for each state and month, 
and discharges (decreasing grid demand) during the three highest-emissions hours in the average day. 
Three hours of charging and discharging at nameplate capacity correspond to the modeled storage 
duration of three hours. If distributed charging would exceed the existing system peak demand, distributed 
charging is spread across up to the five least emissions-intensive hours, decreasing the amount charged in 
each hour to maintain the same total energy charged. 

Calculate Total Emissions Reduction, 2024–2035 
 
We calculate total emissions reduction by identifying the total net change in load in each hour based on 
VPP shifts in demand, then multiplying by the appropriate emissions factor. We do this for all states and 
months in each analysis year and perform VPP dispatch and emissions calculations separately for each 
estimate level identified above in Error! Reference source not found..  
 
We interpolate subsector load and total distributed storage deployment across analysis years and use the 
enrollment trajectories identified in Table 10 to calculate enrolled VPP flexible demand load and 
distributed storage capacity in each year 2024–2035. To interpolate the amount of emissions avoided by 
VPP dispatch, we calculate an annual average realized emissions savings for each per MWh of flexible 
demand load enrolled in a VPP and per MW of distributed storage capacity enrolled in a VPP, with units 
𝑘𝑔 𝐶𝑂2𝑒

𝑀𝑊ℎ
⁄  and 𝑘𝑔 𝐶𝑂2𝑒

𝑀𝑊⁄ , respectively. We calculate average realized emissions savings 
separately for each sub-sector and state.  
 
Using average realized avoided emissions values, we calculate total emissions reduction in each year 
2024–2035 using  
 

Equation 4 below. 
 

Equation 4. Total Annual Emissions Reduction. 

 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦𝑒𝑎𝑟 𝑦, 𝑠𝑡𝑎𝑡𝑒 𝑠, 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑒𝑐𝑡𝑜𝑟 𝑡, 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑜𝑛𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑦 (𝑘𝑔 𝐶𝑂2𝑒)

= ∑ (𝑉𝑃𝑃 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑙𝑜𝑎𝑑𝑦,𝑠,𝑡(𝑀𝑊ℎ)

𝑠,𝑡

∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑎𝑣𝑖𝑛𝑔𝑠𝑦,𝑠,𝑡 (
𝑘𝑔 𝐶𝑂2𝑒

𝑀𝑊ℎ
⁄ ) )

+ ∑ (𝑉𝑃𝑃 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑦,𝑠(𝑀𝑊)

𝑠

∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑎𝑣𝑖𝑛𝑔𝑠𝑦,𝑠 (
𝑘𝑔 𝐶𝑂2𝑒

𝑀𝑊⁄ )) 

 
We compare total annual emissions reduction from VPPs with NREL’s Cambium data set of future US 
power sector scenarios, specifically using the “95 percent decarbonization by 2050” scenario. 
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Figure 3, below, shows aggregate emissions reduction from demand flexibility for each estimate level over 
the analysis period. 
 
Figure 3. Annual VPP Emissions Reduction Potential for the United States, 2024–35, 2024–2040. 

 
Source: RMI analysis. 

Limitations 
This analysis is a directional estimate of emissions reduction potential by virtual power plants. We make 
several simplifying assumptions in our analytical methods, consistent with our goal of providing an 
understandable, reasonable, and computationally tractable analysis using available data sets. We list 
several simplifying assumptions and limitations below and discuss potential opportunities for future 
analyses to further refine approaches to demand flexibility. 

Accurately Modeling VPP Operations 

• We do not model any specific mechanism for dispatching demand flexibility (e.g., time-varying 
rates, demand response tariffs or programs, or VPP platforms). We assume instant, perfect 
participation from end-users who have enrolled in a VPP without considering fatigue or end-user 
over-rides. Further analysis could include definition of VPP programs and consideration of multiple 
participant priorities. 

• The VPPs’ Nationwide Carbon Savings Potential analysis does not include an economic or cost-
effectiveness assessment of VPP operations, and it does not include consideration of trade-offs 
between other grid-services beyond emissions reduction that might be provided beyond carbon 
reduction. Some grid services, (e.g., meeting peak demand) may be partially or completely aligned 
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with reducing emissions, but future analyses could better characterize trade-offs and synergies 
with provision of other VPP grid service offerings. 

• We assume perfect demand shifting coordination between VPP technologies to avoid creating new 
system peak demands. 

• We assume that shifting demand through VPP operations is perfectly efficient and requires the 
same amount of energy as demand without shifting. Further analysis could integrate dissipation 
rates for specific technologies (e.g., water heated will cool over time, leading to additional required 
energy to provide the same level of heated water) and other behavioral rebound effects.  

• VPP operations are conducted with perfect foresight in terms of hourly emissions, and the long-run 
marginal emissions rate assumes knowledge of future build actions based on shifts in demand. 
This is appropriate for a long-run estimate of emissions reduction potential but may not capture the 
nuances of determining marginal short- and long-run emissions rates in real time. 

• We assume flexible demand VPP technologies based on observed demand flexibility ability in 2018, 
and do not introduce any advanced demand flexibility technology or methods. Data center demand 
flexibility, for example, is not included in this analysis. 

• We assume that participation consistently increases over time. 

 

Estimating Load 

• We use a combination of inputs to conduct this analysis, including load forecast and demand 
flexibility from NREL’s Electrification Futures Study “High electrification, moderate technology 
advancement, enhanced participation” scenario and marginal and average emissions rates from 
the NREL Cambium “95 percent decarbonization by 2050” scenario.41 These data sets and 
scenarios make different assumptions about future power sector conditions (including different 
load profiles), and the discrepancy between projected load and flexibility from NREL EFS and 
projected emissions rates from the 2022 NREL Cambium “95 percent decarbonization by 2050” 
scenario could potentially distort results. 

• We examine average hourly load for each month, and do not analyze variation in demand or 
demand flexibility between days in a single month. While conducting this analysis using average 
hourly load days provides a better sense of general patterns for a given state and month, this 
analysis is not able to investigate the potential for VPP demand flexibility to address opportunities 
and risks created by any single particular weather or renewable generation pattern, including 
particularly high- or low-renewables days. Average annual days may also dilute the emissions 
impacts of wind energy because they are less concentrated during the same hours every day 
compared to solar energy. We also assume that demand flexibility is called every day of the year.  

• We only examine intra-day flexibility, rather than demand flexibility between days or across 
multiple days. These options could potentially identify more effective shifts in demand. 

Emissions Rates 

• For the purposes of using long-run marginal emissions rates, we assume that resource planners 
can treat demand shifts as fixed and permanent. Future analyses could recognize that, while 
demand shifts are not fixed and permanent, additional flexibility provided by VPPs allows for a 
wider range of potential cost-effective resource portfolios.  

http://www.rmi.org/
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• We assume that emissions rate estimates provided by the short- and long-run marginal emissions 
rates are reliable in cases where demand shifts may exceed the definition of “marginal,” with 
demand shifts changing hourly demand by 15% or greater. More advanced approaches to 
measuring and projecting grid emissions are in active development.42 
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