
  

 
The Battery Mineral Loop 
 

The path from extraction to circularity  
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

July 2024 



 

  

2 \ rmi.org  The Battery Mineral Loop  

Authors 
Daan Walter, Will Atkinson, Sudeshna Mohanty, Kingsmill Bond, Chiara Gulli, Amory Lovins 

Contacts 
Daan Walter       daan.walter@rmi.org 

Will Atkinson watkinson@rmi.org 

 

Acknowledgements 
We would like to thank the following individuals for their input and expertise: E.J. Klock McCook, 
Rushad Nanavatty, Laura LoSciuto, Monkgogi Buzwani, Natalie Janzow, Sam Butler-Sloss, Laurens 
Speelman, James Newcomb, Lachlan Wright, Mike Hemsley, Tilmann Vahle, Marissa Gantman, and 
Laurie Stone. 

 

About RMI 
 

 

 

RMI is an independent non-profit, founded in 1982 as Rocky Mountain Institute, that transforms global 
energy systems through market-driven solutions to align with a 1.5°C future and secure a clean, 
prosperous, zero-carbon future for all. We work in the world’s most critical geographies and engage 
businesses, policymakers, communities, and non-governmental organizations to identify and scale 
energy system interventions that will cut climate pollution at least 50 percent by 2030. RMI has offices 
in Basalt and Boulder, Colorado; New York City; Oakland, California; Washington, D.C.; Abuja, Nigeria; 
and Beijing. 

  

http://www.rmi.org/
mailto:daan.walter@rmi.org
mailto:daan.walter@rmi.org


 

 

The Battery Mineral Loop rmi.org / 3 

  

Table of Contents 
Executive Summary ............................................................................................................. 4 

1. The six solutions to the battery mineral challenge ....................................................... 6 

The battery mineral challenge ........................................................................................................ 6 

Six solutions ..................................................................................................................................... 8 

Solutions are already underway ..................................................................................................... 9 

Expert outlooks keep underestimating the pace of change ....................................................... 10 

2. Continuing the current trend: peak battery minerals in a decade ................................ 11 

The drivers of continued change .................................................................................................. 11 

Peak mineral demand in the mid-2030s ....................................................................................... 16 

3. Accelerating the trend: net-zero battery mineral demand by 2050 is within reach ........ 18 

The drivers of accelerated change ................................................................................................ 18 

A lower peak in mineral demand .................................................................................................. 22 

Approaching net-zero battery mineral demand by 2050 ............................................................ 22 

4. The implications of meeting the battery mineral challenge ......................................... 24 

Making mining a one-off effort ...................................................................................................... 24 

From oil dependence to circular independence .......................................................................... 27 

A circularity race to top ................................................................................................................. 28 

Upstream solutions boost downstream success ......................................................................... 30 

Deeper efficiency brings greater benefits .................................................................................... 30 

Actions toward circular self sufficiency ........................................................................................ 31 

A lot of room to go faster ............................................................................................................... 32 

Managing the volatility to come ................................................................................................... 33 

Appendices ........................................................................................................................ 34 

Appendix A: Modeling demand for battery minerals ................................................................... 34 

Appendix B: Modeling continued trends ...................................................................................... 35 

Appendix C: Assumptions for the accelerated trend ................................................................... 38 

Appendix D: Benchmarking outlooks ........................................................................................... 39 

Appendix E: Further context on meeting peak mining demand ................................................. 40 

Appendix F: Further notes on the six solutions ............................................................................ 42 

Endnotes ........................................................................................................................... 43 
 

  

http://www.rmi.org/


 

  

4 \ rmi.org  The Battery Mineral Loop  

Executive Summary  

Battery minerals are not the new oil. Even as battery demand surges, the combined forces of 
efficiency, innovation, and circularity will drive peak demand for mined minerals within a 
decade. They could even allow us to avoid mineral extraction altogether by 2050. These 
advancements enable us to transition from a linear extraction model to a circular loop, with 
compounding benefits for our climate, security, health, and wealth. 

• There are six solutions to mitigate the need for mineral mining. These include deploying new 
battery chemistries, making batteries more energy-dense, recycling their mineral content, 
extending their lifetime, improving vehicle efficiency, and improving mobility efficiency.  

• Change is already underway. Without the past decade of chemistry mix, energy density, and 
recycling improvements, lithium, nickel, and cobalt demand would be 60%–140% higher than they 
are today. The majority of global lithium-ion batteries already get recycled today. 

• Peak mineral demand is only a decade away. Continuing the current trend means we will see 
peak virgin battery mineral demand in the mid 2030s. As chemistry mix, energy density, and 
recycling continue to improve, the net demand — total demand minus recycled supply — will peak 
for lithium, nickel, and cobalt. 

• Net-zero mineral demand before 2050 is within reach. Accelerating the trend— using all six 
solutions above — means we can reach (near) zero mineral mining demand before 2050, when 
virtually all battery demand can be met through recycling.  

• So mineral mining will be a one-off effort. End-of-life batteries will become the new mineral ore, 
limiting the need for battery mineral mining in the long term. After using a battery for 10–15 years, 
its mineral content can be collected and recycled at 90-94%+ efficiency. So improving overall 
battery and transport system efficiency by 6-10% per decade is enough to offset recycling losses.  

• Circularity will kickstart a “perpetual motion machine.” Such a closed-loop supply chain means 
we can continue to derive value from battery minerals for centuries. Over the next 20 years, we will 
gather minerals not just to power the energy system of 2050, but also through to 2100 and beyond. 

• We won’t have to move mountains. Accelerated progress means we only need to mine a 
cumulative 125 million tons of battery minerals. This quantity alone can get us to circular battery 
self-sufficiency. That is 17 times smaller than the amount of oil we extract and process for road 
transport every year. And, at today’s commodity prices, about 20 times cheaper as well.  

• We have enough minerals. Our known reserves of lithium, cobalt and nickel are twice the level of 
total virgin demand we may require. And announced mining projects are already sufficient to 
extract almost all the minerals we need. 

• Countries can move from oil dependence to circular independence. Most economies would 
grind to a halt if oil imports were to stop. Electric vehicles powered by renewables face no such 
short-term risk, especially when paired with battery recycling and (re)manufacturing. 

• China leads the battery circularity race to the top. China’s largest battery manufacturer, CATL, 
expects battery recycling to lead to mineral independence in China by 2042. The West is trying to 
catch up, while the Global South can benefit from the batteries in their used vehicle imports.  

• Systemic solutions will broaden the benefits. The more holistically we approach demand 
through efficient batteries, vehicles, and mobility, the broader the benefits for the climate, human 
rights, security, health, and wealth.  

• To accelerate action, we need all stakeholders to lean in. From governments to corporate 
innovators, all have a role to play in capturing the circular opportunity.  

http://www.rmi.org/
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Exhibit 1: The battery mineral loop in six charts 

 
Note: All tons in this report are metric tons.  

Source: RMI analysis; BloombergNEF (2024), IEA Global EV Outlook and Critical Minerals Outlook (2024), USGS National Minerals Information Center 

http://www.rmi.org/
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1. The six solutions to the battery mineral challenge 

The energy transition is a materials transition. As the transition accelerates, some materials will go 
into decline, while others need to scale up rapidly to meet new demands. 

As described in the latest IEA minerals report,1 the materials that are currently under most scaling 
pressure are lithium, cobalt, nickel, graphite, rare earth elements, and copper.  

Batteries are a key driver of this growth. Batteries are made up of different combinations of materials 
purified from specific minerals,i and as battery sales are set to grow, so will mineral demand. 
According to the IEA, batteries will drive 97% of the increase in lithium demand, 78% of nickel, and 
80% of cobalt, while also raising demand for copper, graphite, and rare earth elements. 

In this report, we focus on mineral demand from the battery sector, highlighting the three minerals — 
lithium, nickel, and cobalt — where batteries are the biggest contributor to growth. Many of the 
takeaways will hold true for graphite, copper, and other key minerals as well. The following sections 
discuss six solutions to manage mineral demand growth, then lay out two possible futures. 

Exhibit 2: IEA Outlook mineral demand growth from 2023 to 2040 

 

The battery mineral challenge 

Battery demand is rising exponentially — growing at a breakneck pace of 33% per year for the past 
three decades. As described in detail in our report X-Change: Batteries,2 growth looks set to continue 
at either a Fast or Faster pace. Total battery sales exceeded 1 TWh in 2023, and will grow to 5.5–8 TWh 
by 2030 and 12 TWh by 2050.3 This includes approximately 1 TWh for stationary grid storage, a fraction 
of that for consumer electronics, and the rest for mobility.  

 
i  This report uses “minerals” as shorthand for mined materials (usually chemical compounds of desired elements), as well as the valued products that are 
extracted from them after mining.  

Source: IEA Global Critical Minerals Outlook (2024)
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Exhibit 3: Annual battery demand, Fast and Faster scenario 

 
 

As battery sales rapidly rise, the demand for the minerals that batteries are made of — currently 
lithium, cobalt, nickel, and more — will grow.  

Many of these minerals come from previously niche mining sectors. For example, before the rise of 
lithium-ion batteries in the 1990s and 2000s, lithium was a niche element with marginal demand in 
ceramics, glass, and some aluminum production. As demand for lithium-ion batteries grew, the 
lithium supply sector had to overhaul itself to meet the rapid pace of growth, growing at over 11% per 
year over the past 30 years.4 

This has not gone without stresses on the supply chain. For example, it was only late in 2023 that 
lithium, nickel, and cobalt prices retreated from an 18-month spike caused by extreme market 
tightness.5 

This situation has sparked widespread concern regarding the sustainability of ramping up mineral 
mining to meet demand, as well as the long-term availability of these essential minerals. This scaling 
challenge is increasingly recognized as a primary hurdle to the growth of the battery sector, and 
consequently, to the rise of electric vehicles.  

Moreover, increased mining could bring increased impacts on vulnerable communities — including 
the use of forced labor, dangerous working conditions, water depletion, soil contamination, 
biodiversity loss, and disruption to local economies.6 For example, mining is the top sector driving 
global environmental conflicts with Indigenous peoples.7 Even if mineral mining can be increased, 
there are many reasons to pursue other solutions. 

Thankfully, scaling up mineral mining is far from the only solution to the battery mineral challenge.   

 
 
 
 

http://www.rmi.org/
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Six solutions 

As outlined by Amory Lovins in 2021, there are six key solutions to manage rapid mineral demand 
growth8 — shown here in rough decreasing order of impact on demand so far: 

A. Changing chemistries: Deploy different battery chemistries that require fewer critical 
minerals. 

B. Higher energy density batteries: Store more energy per kilogram through better battery 
engineering. 

C. Recycling: Recycle batteries at the end of their life to reuse their minerals for new battery 
production. 

D. Reuse and extend lifetime: Use and reuse batteries longer, to avoid frequent replacements 
and provide a greater flow of service from a smaller stock of batteries and their minerals. 

E. Efficient vehicles: Make cars more efficient — lighter-weight, sleeker, with better tires and 
accessories — and right-size them for purpose to allow for smaller batteries for the same 
vehicle range. 

F. Efficient mobility: Reduce the demand for motorized transportation and induce mode-shifts 
to public transit, electric micromobility, cycling, and walking through better urban planning, 
smarter transportation infrastructure investments, and logistics efficiency. 

Exhibit 4: The six solutions to the battery mineral challenge 
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Solutions are already underway 

Three of these six solutions have already significantly reduced battery mineral demand. If we had 
continued to make batteries just as we did in 2015 (and didn’t reuse or recycle any of them), nickel 
and cobalt demand in 2023 would have been more than twice as high, and lithium demand would be 
about 58% higher.   

Chemistry change was the primary driver of curbing nickel and cobalt demand, driven by the growth 
of lithium iron phosphate (LFP) batteries that need no nickel and cobalt. 

Average density for each chemistry has also improved by approximately 25% since 2015,9 lowering the 
mineral demand per battery. And some of that demand is now being met by recycling, which was 
already in place for more than half of lithium-ion batteries globally in 2019.10  

Driven by scarcity concerns, we have already come a long way to mitigate mining demand with these 
solutions. As Lovins has illustrated,11 actual or perceived resource scarcity can inspire solutions that 
may help to displace a resource altogether.  

Exhibit 5: The impact of chemistry changes, energy density, and recycling on net mineral demand in 2023  

 

 
 
 
 
 
 
 
 
 

Source: RMI analysis. Recycling includes recycling of production scrap, which is generally economic already. 
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Expert outlooks keep underestimating the pace of change 

Experts keep underestimating the pace at which the battery sector manages to innovate minerals out 
of batteries. Outlooks keep correcting battery mineral demand downward, even as battery demand 
forecasts are corrected upward. 

For example, the BloombergNEF (BNEF) outlook for battery demand in 2030 was raised by a factor of 
1.8 in just four years (from 2019 to 2023).12 But as batteries shifted chemistries and improved their 
densities, the associated lithium demand only rose by a factor of 1.3, and projected cobalt demand 
fell by half. Thus, over that four-year period, the projected 2030 mineral demand per battery fell by 
more than 3.6x for cobalt and 1.4x for lithium.  

Exhibit 6: Battery demand forecasts versus mineral demand forecasts 
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2. Continuing the current trend: peak battery 
minerals in a decade 

As battery sales grow, the demand for minerals will rise with it. But growing battery demand tenfold 
will not necessarily raise battery mineral demand by a factor of 10. Three solutions to the battery 
mineral challenge — chemistry changes, density improvements, and recycling — have already been 
curbing mineral demand. 

This section explores what a continuation of these three trends will mean for battery mineral demand. 
We find that under continued trends, virgin mineral demand will peak around the mid-2030s.  

The drivers of continued change 

In this sub-section we lay out what a continuation of the global trend in chemistry changes, density 
improvements, and recycling improvement means.  

The chemistry mix continues to evolve 

As battery innovation continues and sales scale to new applications and sectors, the mix of battery 
chemistries used in new technology will change. Different battery chemistries use varying amounts of 
minerals, so a change in chemistry mix changes the demand for each mineral. 

For example, moving from nickel manganese cobalt (NMC) 532 to NMC 811 reduces the cobalt demand 
of a battery by more than half, though at the expense of higher nickel demand. Moving to LFP can get 
rid of all nickel and cobalt demand, both replaced by iron and phosphorus.  

New chemistries are set to grow in the coming decade, as forecasted in BNEF’s chemistry mix outlook 
— leading to a continued shift in battery mineral demand. Different chemistries are also diverging for 
distinct costs and use cases, much as lower-cost electric cars favor cheaper LFP.  

In just the past year, LFP technology and cost improvements doubled the projected LFP share of 
commercial vehicle batteries (from ~40% to ~80%), with significant increases for passenger vehicles as 
well.13 That change led to a drop in projected nickel demand by 25%–35%.14  

  

http://www.rmi.org/
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Exhibit 7: Battery mineral demand by chemistry and chemistry mix 

 
 

Innovation keeps increasing energy density  

As battery sales increased in past decades, the energy density of batteries rose, driven by growing R&D 
budgets and economies of scale. This report focuses on battery cell densities to understand the effect 
on mineral demand — though there are other improvements in pack-level components as well. 

On average, for every doubling of cumulative battery demand, the average energy density of lithium-
ion battery cells (kWh/kg) rose by about 6%. As battery demand grows, we can expect energy density 
to rise with it — storing more electricity in fewer kilograms.   

Part of the historic density improvement came from chemistry changes — shifting from less to more 
energy-dense battery chemistries. We estimate that this accounts for about 2% of the 6% 
improvement per doubling of cumulative demand. Hence the net learning rate of energy density 
improvements (for a given chemistry) is about 4%, or two-thirds of the total learning rate.  

As battery deployment doubles at least another 4 to 5 times before 2050, density can be expected to 
rise by over 25%.  
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Source: BNEF Long-Term Electric Vehicle Outlook (2024), IEA Global EV Outlook (2024), RMI analysis. Includes all sectors of battery demand.

Exhibit 1: Battery demand and resulting mineral demand

50%

75%

25%

100%

0%
2015 2023 2035

85 1,058 8,884

of total 
sales

Note on groups: Nickel-based (NMC 111, NMC 532, NMC 622,, NMCA, NCA 85, NCA 90, 
LMO, LNMO, LCO), Novel nickel-based (NMC 955, NMC 811, NMC 721, NMC 96Ni, LMR-
NMC, NCA 92, NCA 95, eLNO), LFP (LFP), Novel LFP (LMFP), Sodium-based (Na-ion)

Outlook

Nickel-
based      
& LCO

LFP

Novel 
LFP

Sodium

Novel 
nickel-
based

Cathode chemistry mix outlook, continued trend Mineral demand by chemistry, examples

0.6 1.2 1.8 2.40.0

Si-Gr

Graphite

Li metal

LFP

NMC 811

NMC 721

NMC 622

NMC 532

Oxide (Na-ion)

PW (Na-ion)

NCA

Anode

Cathode

LithiumNickelManganese

IronPhosphorous CarbonSilicon Nitrogen

kg/kWh

Note: no cobalt or 
nickel in LFP 
batteries

http://www.rmi.org/


 

 

The Battery Mineral Loop rmi.org / 13 

Exhibit 8: Average energy density learning rate for lithium-ion battery cells  

 

Recycling continues to grow 

Battery recycling is already well underway.  

According to the research and consulting firm Circular Energy Storage, 59% of all lithium-ion batteries 
were recycled globally in 2019,15 and their more recent assessments suggest it could be as high as 90% 
today.16 BNEF now estimates global collection rates of 60% or above for most sectors. In any case, the 
collection rate is much higher than the often cited but clearly wrong figure of only 5%. We provide 
more detail in Appendix C and F.  

Of the batteries that are collected and recycled, 80% to 95% of minerals can be recovered with current 
recycling processes.17  

A global policy push on recycling 

Driven by energy security concerns, countries around the world are boosting battery recycling with 
ambitious policies.  

In Europe, the "EU Battery Regulation" mandates higher collection rates and efficient recycling 
processes.18 The United States has introduced initiatives like the Battery Recycling and Critical Mineral 
Recovery Act to fund recycling programs and research.19 China has implemented stringent recycling 
regulations and established a robust infrastructure for battery recycling.20 We provide more detail in 
the next section. 
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Recycling economics are improving 

Recycling economics are improving, thanks to rapid innovation and economies of scale. 

Recycling costs differ by region and chemistry, driven by different labor costs, standards, and subsidy 
schemes. As new, cheaper recycling processes develop, profitability rises.  

Today, most battery recycling is done via a pyrometallurgical process — a high-temperature process 
to recover minerals. Newer hydrometallurgical processes — leveraging chemical solutions — tend to 
have better economics and hence are growing rapidly. Novel direct recycling methods will further 
improve competitiveness with a lower environmental footprint.  

Beyond technology development, further cost reduction can be expected from rising recycling facility 
utilization as more batteries will start to retire. Today, recycling plants can run at utilization levels 
below 25%. As recycling is a capital-intensive business, higher utilization will lead to lower unit costs.  

Although mining new minerals may seem to be more financially profitable than recycling for the 
foreseeable future, this advantage disappears when externalities are taken into account.21 Mining 
does much greater environmental and societal harm, which, with the right externality pricing policies, 
can turn the economic case in favor of recycling. Thus, batteries will cost society less if they are 
recycled wherever possible.  

Exhibit 9: Improving battery recycling economics, net battery recycling profit, by region, selected chemistries 
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Source: ETC Material and Resource Requirements for the Energy Transition (2023), Biswal et al. (2024), RMI analysis
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Enough recycling capacity through 2030 

As a result of a strong policy push and improving economics, battery recycling capacity is scaling up 
rapidly — currently well in advance of batteries reaching end-of-life.  

As shown in Exhibit 10, the total announced battery recycling capacity today would be sufficient to 
recycle all available batteries at end-of-life through 2030, as well as all their production scrap. Hence, 
recycling at the current collection rate of about 60% should raise no near-term capacity concerns at a 
global level. Indeed, the ability to predict end-of-life battery quantities far in advance permits much 
smoother expansion of recycling capacity, with less financial risk.   

Exhibit 10: Battery recycling capacity and availability of recyclable batteries 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: IEA Global EV Outlook (2024), RMI analysis

Exhibit X: Recycling is ramping up fast
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Peak mineral demand in the mid-2030s 

Continuing the current trend means we face lower mineral demand growth than one might expect. As 
shown in Exhibit 11, the three continued trends — chemistry change, density improvement, and 
recycling — reduce 2030 mineral demand by about 25% for lithium, 40% for nickel, and 75% for cobalt 
(compared to a no solutions scenario). Some of cobalt’s improvement also comes from the rise of the 
automotive sectors, which use chemistries that require less cobalt per battery cell than consumer 
electronics do. 

After 2030, change will continue to curb mineral demand growth, leading to a peak in net demand for 
lithium in 2038, nickel in 2034, and cobalt in 2028 — all within a single battery lifetime.  

Appendix B provides a more detailed analysis.   

Exhibit 11: Net mineral demand under continued trends versus no solutions, fast battery uptake scenario 
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Exhibit X: Peak mineral demand under current collection and recovery rates
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Going faster leads to a higher peak and faster decline 

If the transition unfolds faster than in the above case, the mineral peak will be substantially higher 
while, in the case of lithium and nickel, moving closer by a few years.  

Though battery demand is expected to increase by a factor of 8 to 11 by 2035, the net demand for key 
minerals will grow more modestly. Specifically, net demand will peak at just over 3 to 4 times the 2023 
levels for nickel, just under 6 to 8 times for lithium, and only 1.3 to 1.6 times for cobalt. 

After the peak, net mineral demand will start to decline as recycled materials outpace the growth of 
gross battery mineral demand, although the dynamics of the system imply that the curve takes many 
years to turn fully downward. 

As we will see in the next section, demand may even reach net zero in the long term. 

Exhibit 12: Battery demand and resulting mineral demand under continued trends 
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3. Accelerating the trend: net-zero battery mineral 
demand by 2050 is within reach 

Change begets change, and action begets action. New innovations in battery production and 
recycling, along with renewed attention to efficiency and energy security, accelerate solutions to the 
battery mineral challenge. 

This section shows what such an accelerated trend may look like, including all six solutions from 
Section 1. We analyze a faster change in chemistry mix, energy density, and recycling, as well as 
extending battery lifetimes and making both vehicles and transport systems more efficient.  

We find that an accelerated trend can nearly halve peak lithium demand, while avoiding most of long-
term demand and putting net-zero battery mineral demand by 2050 within reach. 

The drivers of accelerated change 

In this section, we provide a reasonable scenario for the six solutions that can accelerate the pace of 
change. Our estimates are often far more conservative than the full potential. 

Exhibit 13: The drivers of an accelerated trend  

 

Accelerated battery chemistry mix change 

The continued trends scenario is relatively conservative. It assumes no major scale-ups of emerging 
battery chemistries, only shifts among existing ones. The past decade has taught us to expect 
otherwise. Advanced energy storage may also emerge from technologies other than electrochemical 
batteries. 

Novel battery chemistries have made rapid progress toward commercialization. Though many are still 
in a pre-commercial stage, sodium-ion chemistries are quickly approaching the mass market. In just 
the past year, several battery and car companies (including CATL, BYD, Northvolt, Farasis, JAC, and 
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JMEV) made significant product announcements that included sodium-ion batteries.22 As new sodium 
batteries scale, demand for lithium, nickel, and cobalt will fall.23 

Accelerated energy density innovation 

As described in our previous report, X-Change: Batteries, the pace of energy density improvements of 
leading batteries is accelerating. Some improvements are making LFP batteries better than ever,24 
while others are using new designs to improve the usable energy per charge.25  

This acceleration suggests that the average energy density could start rising faster as well, as the top-
tier batteries of today are the average batteries of tomorrow.  

Thus, the 6% learning rate under continued trends may well turn out to be a percentage point or so 
higher, as the average catches up to the leader. 

Better recycling 

As discussed in the previous section, policy for battery recycling is accelerating — led by China and the 
EU, as well as the United States more recently. These policies imply a likely acceleration in recycling 
rates. 

On battery collection rates, for example, China's National Guidance for New Energy Vehicle Battery 
Recycling was implemented in 2018 and demands a 100% collection rate for EV batteries (like nearly 
all US states’ requirement for lead-acid gasoline-car batteries), while complementary policies improve 
traceability and infrastructure.26 Recent EU legislation will also increase collection rates for EVs and 
consumer electronics. And in the US and beyond, leading startups are scaling fast to realize the 
opportunity, including Ascend Elements, Green Li-ion, Li-Cycle, and Redwood Materials.27 There is 
every reason to believe that collection rates can exceed the approximate 60% of the continued trends 
case and reach 90% or more.  

Mineral recovery rates will improve as well. For nickel and cobalt, CATL in China claims it has already 
achieved a recovery rate of 99.6%.28 For lithium, innovative companies have achieved recovery rates 
of 95% or more, including toZero and Renewable Metals, with commercial operations on track to 
begin soon. Direct recycling approaches, such as from Princeton NuEnergy, offer even better 
economics and similarly high recovery rates, though still at pre-commercial scale (as of spring 2024).29 
As these technologies rush to market, average recovery rates can be expected to rise from 80%–95% 
today to 95%–99% or more in the coming decade. 

Longer battery lifetimes 

There are many ways to extend battery lifetimes by reuse or better maintenance. From 2021 to 2024, 
progress on lifetime extension caused BNEF to increase projected battery lifetimes by an average of 
two years.30 If progress continues to outpace expectations, we may well see another two-year 
increase, similar to findings in recent research papers.31 Second-life batteries are also projected to 
grow, becoming a $7 billion market within a decade.32  

Efficient vehicles 

In the race to more affordable EVs, automakers are redesigning vehicles from top to bottom. For 
example, a recent EPRI and NRDC study found that continued advances in US EV efficiencies could 
halve the electricity consumption per mile by 2050.33 As this trend accelerates, per-vehicle battery 
demand could drop nearly 30% by 2030, as outlined in the latest IEA Global EV Outlook.34  

This is just a fraction of the technoeconomic potential. BMW profitably sold the 2013–2022 i3 at 
quadruple typical vehicle efficiencies — while multiple startup designs would bring deeper 
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improvements if commercialized.35 So would the Mercedes 2022 EQXX concept EV,36 which is 87% 
more efficient than a standard-range Tesla Model 3. 

Efficiency improvements could also come from vehicle right-sizing, where there is ample room to 
improve. Popular sedan models are 44% larger than they used to be, while popular pickup trucks are 
75% larger.37 US cars gained weight faster than their drivers, but surely the drivers didn’t balloon that 
much. Moreover, SUVs’ share of EV sales has doubled or tripled, from 20%–25% to 50%–75% (across 
different regions), in just five years.38 Even just returning to recent, lower SUV sales shares could 
satisfy our accelerated scenario, compared to a persistently high share under continued trends. 

Efficient mobility 

Further upstream, more efficient mobility can significantly curb mineral demand for trucks and cars. 
In countries like the United States, an average freight mile sees the truck less than half full.39 Logistics 
optimization and digitization are helping companies rapidly improve their truck utilization, reducing 
the total number of trucks needed to move the same goods.  

For passenger vehicles, ambition is turning into action as global cities accelerate land use reform. 
After just five years of transformative policies, Paris has transformed into a city that now sees many 
more trips by bike than by car, both inside the city and from the city center to suburbs.40 Much more is 
possible in developing countries, where smart design during new infrastructure buildout can provide 
major benefits.41 As usual, it’s easier to build things right than to fix them later.  

Even in the United States, RMI research has found that sizable reductions in vehicles miles traveled 
(VMT) are possible,42 impactful,43 and necessary to reach climate goals.44 Enacting land use reforms 
can deliver more climate impact than half the United States ramping to 100% zero-emissions 
passenger vehicle sales by 2035.45  

Successful actions will lead to lower car and truck demand — with reductions of approximately 15%–
20% possible by 2050 based on analysis by the International Council on Clean Transportation (ICCT).46  
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Impact of each solution by decade 

As shown in Exhibit 14, each of the six solutions affects battery demand by different amounts and in 
different decades. 

• Short-term solutions to 2030: the most immediate solutions are faster chemistry change and 
more efficient vehicles. These two solutions can reduce the 2030 lithium demand by 100 
kilotons per year. 

• Medium-term solutions for the 2030s: chemistry change and vehicle efficiency remain the 
dominant levers, but recycling improvements and efficient mobility also start to contribute.  

• Longer-term solutions for 2040 and beyond: recycling takes over as the dominant solution as 
more batteries reach end-of-life. Together with continued improvements in battery energy 
density and in vehicle and mobility efficiencies, most of potential virgin mineral demand can 
be avoided. 

Exhibit 14: Net mineral demand of continued versus accelerated trend, fast battery uptake scenario 

 

 
 
 
 
 
 
 
 
 
 
 

-40

0

40

80

120

160

200

2023 2030 2035 2040
0

300

600

900

1,200

2023 2030 2035 2040
0

100

200

300

400

500

600

2023 2030 2035 2040

Source: RMI analysis

Exhibit X: Peak mineral demand under current collection and recovery rates
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A lower peak in mineral demand  

As more solutions get deployed sooner, mineral demand will peak earlier and at a lower level.  

The accelerated trend results in a 46% lower lithium peak, at less than three times current demand. 
Similarly, peak nickel demand is 31% lower at 2.5 times current demand. Under the accelerated trend, 
cobalt demand may even peak near today’s levels.  

Exhibit 15: Net mineral demand peaks 

 

Approaching net-zero battery mineral demand by 2050 

After peaking, battery mineral demand will continue to decline. 

As annual battery demand reaches its maximum, losses in the collection and recycling recovery 
system can be offset by reduced mineral demand per battery due to efficiency and innovation. We 
illustrate this in the exhibit below. For example, if we collect 95% of batteries for recycling and recover 
nickel at 99% efficiency (under the accelerated case), we achieve a net recovery rate above 94%. This 
means that over a battery's lifetime, which can be more than a decade, solutions need to curb 
demand by just 6% to offset recycling losses. To put that in context: over the past decade, vehicle unit 
nickel demand dropped by almost 45%.  
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Exhibit 16: The battery mineral loop 

 
In our faster energy transition scenario, we rapidly approach maximum annual battery demand in the 
mid-2030s. Within a decade, an equilibrium sets in between mineral demand and mineral recycling, 
leading to a net mineral demand around zero by the mid-2040s. 

Minerals beyond lithium, cobalt, and nickel can also reach net-zero demand. With enough policy 
support to overcome economic barriers, other materials may get recycled as well, leading to a peak 
and decline to net-zero demand before 2050. The story is similar for non-cathode materials such as 
graphite, as most of the six solutions cover the full battery and there are other improvements 
underway in anode chemistry to reduce graphite dependence.47  

Companies are starting to reach the same conclusion: Robin Zeng of CATL recently stated that China is 
on track to reach zero mineral mining demand by 2042 due to its rapidly growing recycling market.48 

Exhibit 17: Net mineral demand for cathodes (demand minus recycled supply), Faster scenario under accelerated trend

 

Exhibit X: The Battery Mineral Loop

Source: RMI analysis
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4. The implications of meeting the battery mineral 
challenge 

In this section, we explore the implications of successfully scaling the six solutions.  

Meeting the battery mineral challenge will turn near-term mining into a one-time effort. As demand 
centers transform into supply hubs, and recycling offsets the need for new materials, countries can 
shift from oil dependence to circular independence, while gaining health and equity benefits that are 
maximized with systemic action. While China is leading the charge, the West is working to catch up, 
and the Global South stands to benefit from the vehicles that reach end-of-life there. 

Making mining a one-off effort 

Before full circularity is achieved in the accelerated trends scenario, an additional ~5 million tons of 
lithium, ~11 million tons of nickel, and ~0.7 million tons of cobalt will need to be mined between today 
and the 2040s. 

After adding the total manganese, aluminum, iron, phosphorus, graphite, sodium, copper, and other 
minerals that go into a battery, we need about 125 million tons of minerals to be extracted before we 
reach circular self-sufficiency. The total value of these minerals is roughly $1,080 billion at today’s 
prices, or on average about $50 billion per year through the mid-2040s. 

To put that into context, the batteries that contain these minerals will enable the phase-out of 
internal combustion engines in road transport. Every year, these engines consume over 17 times 
more tons of oil (2,150 million tons per year) than the amount of battery minerals we’d need to 
extract just once to run transportation forever. Even when including the weight of other raw 
materials in ore and brine, one-off mineral demand would still end up over 30% lighter than annual oil 
extraction for road transport. And unlike minerals, oil products are promptly burned in internal 
combustion engines and must be replaced each year, forever. 

The mined minerals can keep being recycled while demand declines through innovation and 
efficiency. After reaching circular self-sufficiency, little to no mining is needed to sustain the system. 
Most of the minerals mined in the coming decades will still be recycled and reused in our energy 
system hundreds of years from now, much like our existing stock of precious metals. 

That means the next two decades of mining for battery minerals can become a one-off effort, yielding 
the minerals that will not just power our energy and mobility system by 2050 but will continue to do 
so through to 2100 and beyond. 
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Exhibit 18: One-off battery mineral demand in context 

 

Share of global reserves 

The total lithium, cobalt, and nickel needed to reach circular self-sufficiency is only a small share of 
total estimated reserves globally. 

Under the accelerated trend, we only need to mine less than 40% of current lithium reserves, 50% of 
cobalt, and 60% of nickel for the battery sector to reach self-sufficiency. This includes additional 
mineral demand from other sectors, which may turn out to be much lower if similar deep circularity 
and efficiency solutions are pursued. We did not assess that in this report. 

Even under the continued trend scenarios, total lithium, cobalt, and nickel demand through 2050 all 
fall well below total reserves. As shown in Appendix E, there is good reason to believe that total 
reserve estimates will continue to rise as well. So far, the harder we looked for these minerals, the 
more we found.  
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Exhibit 19: Total mineral need versus global reserves  

 

Meeting peak demand 

As shown in Exhibit 20, announced mining projects already get us most of the way to peak demand. 
Only in the Faster battery uptake scenario under continued circularity trends does demand outpace 
announced supply for lithium (by some 23%). There seems to be no gap for nickel and cobalt.  

We still have about a decade to go before we hit peak demand around 2035, so we have ample time to 
fill in any gaps. As shown in Appendix E, is it highly likely we will be able to.  

Exhibit 20: Peak net mineral demand versus announced mining supply 

 

Source: IEA Global Critical Minerals Outlook (2024), USGS National Minerals Information Center, RMI analysis
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From oil dependence to circular independence 

Under the accelerated trends scenario, almost all mineral demand from the mid-2040s onward can be 
met with recycled content from batteries reaching end of life. As the world shifts from mining rocks to 
mining end-of-life batteries to collect minerals, large battery demand centers will attract recycling 
capacity and become supply centers.  

In the long term, a circular battery system is a big step toward total energy independence. And the 
more that efficiency and innovation can curb mineral demand, the easier it will be to reach this state. 

About 80% of world nations (by population) are net oil importers.49 Their oil dependency poses a 
constant, imminent risk to their economy as it requires a continuous stream of imports. If oil imports 
stop, most countries would face immediate paralysis. 

Transitioning to EVs powered by renewable energy reduces this risk significantly. While many 
countries might still be net importers of solar PV, batteries, and battery minerals, this dependence is 
only crucial for technology replacement and growth, not day-to-day operations.  

A circular technology system eliminates this residual dependence by enabling domestic recycling of 
materials. This can mitigate most of the replacement risk and even derisk growth, leading to near-
total energy independence.  

This means battery recycling has the potential to become a key geopolitical tool to reshore or 
friendshore supply, regardless of the location of geological mineral deposits, and to improve global 
security and stability. 

Countries have started to recognize this benefit, making aggressive recycling policy as laid out in 
sections 2 and 3, kickstarting a race to the top on battery circularity. 

Exhibit 21: From oil dependency to circular energy independence

 

 
 

Source: RMI analysis
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A circularity race to top 

China is leaping ahead of other countries — building out battery recycling capacity at breakneck pace. 
As shown in Exhibit 22, China’s near-term recycling capacity addition plans dwarf those of the EU and 
United States in the coming years. 

Other countries risk falling a step behind, focusing on yesterday’s debate of who owns the mines and 
who gets to build the batteries, instead of who gets to derive the most value from the batteries 
through efficient and prolonged use, and who gets to recycle them in the end. 

Through efficiency and recycling, the West — behind in the mineral race today — is given a golden 
opportunity to stage a comeback and become mineral-independent in the 2030s. It is not sitting on its 
hands, but is rapidly developing new battery circularity policies.  

There is still a lot to play for; today, only 1.5 out of the 9 to 12 TWh per year in recycling capacity 
needed in the long term is planned for. We are less than one fifth into the race.  

Recycling batteries will take more than just building recycling centers. Other infrastructure is needed 
for collection and sorting. And domestic refining and manufacturing is essential to turn recycled 
minerals into local batteries.   

Exhibit 22: Battery recycling capacity outlook
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The Global South can play an outsized role 

Many vehicles end their life in the Global South as second- or third-hand cars, creating a unique 
chance for these regions to capitalize on the battery recycling value chain.  

As shown in Exhibit 23, the UN estimates that millions of second-hand cars are exported from the 
Global North to the Global South each year. Once car fleets shift to EVs, this influx of old battery-
powered vehicles can be used to set up a robust recycling industry from vehicles that reach their end 
of life, allowing for job creation, economic growth and geopolitical leverage over the battery supply 
chain.  

Battery manufacturing and mineral processing capacity is already growing in parts of the Global 
South, such as in Morocco, Indonesia, Chile, Argentina, and Brazil.50,51,52 Establishing recycling facilities 
nearby is a logical step to optimize efficiency and support local industries. 

Exhibit 23: Used car trade flows 
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Upstream solutions boost downstream success 

Meeting the battery mineral challenge will mean pulling all levers at our disposal. Rapid roll-out of 
upstream solutions will maximize downstream success.  

For example, we may not need to build as much recycling capacity if we promote better urban 
planning and mode shifting, which can reduce car sales and hence battery demand. Such an approach 
avoids overbuilding mitigation measures.  

From upstream to downstream, the six solutions are best sequenced as follows: 

1. Efficient mobility — reduce the amount and type of vehicles needed. 

2. Efficient vehicles — use fitter designs and right-sizing to reduce the battery capacity needed 
per vehicle.  

3. Changing chemistries — ensure that the most resource-efficient batteries are used in each 
application. 

4. Higher energy density batteries — drive innovation of each chemistry to improve the energy 
density. 

5. Reuse and extend lifetime — ensure that the batteries in each vehicle can be used for as long 
as possible, through better operation and maintenance or reuse. 

6. Recycling — when batteries finally reach end-of-life, recycle their materials.  

It must be noted that these first five steps only reduce or delay mineral demand, and only the addition 
of the final step — recycling - will make the battery system circular. In the long term, recycling is the 
most impactful lever for curbing virgin mineral demand.  

 
Deeper efficiency brings greater benefits 

Combining better batteries with more efficient vehicles and mobility can maximize societal benefits 
for emissions, equity and human rights, security, health, and much more. 

Though EVs already have much lower life-cycle emissions than combustion cars,53,54 efficiency and 
circularity can drive down emissions much further. Recycling can save a third or more of battery 
production emissions,55 with further improvements from energy density, reuse, and vehicle efficiency 
(which also requires less energy per distance). More efficient mobility can eliminate further emissions, 
including in buildings and land use from smarter city design.56 

The six solutions can also help to address global human rights and equity concerns. Curbing oil 
demand reduces the inequities of fossil fuel pollution and its climate impacts,57 while curbing mineral 
demand can avoid harmful labor practices such as in cobalt mining58 (where projected demand has 
been halved by just three years of innovation).59 Efficient mobility can strengthen equity in other ways, 
as public transport and active modes are disproportionately used by low-income communities across 
the world.60,61,62,63   

Achieving a circular energy system will also avoid dependencies on both oil and minerals, as 
mentioned in the previous sections. Recent research suggests that demand-side policies are among 
the most powerful levers to maximize energy security.64  

Finally, the six solutions can benefit health in several ways. Air pollution has been named the leading 
contributor to global disease burden65 — and more than 5 of its 8 million annual deaths have come 
from the burning of fossil fuels.66 Switching to EVs already reduces that number substantially. More 
efficient (and smaller) vehicles will also save lives for pedestrians, as large vehicles are 45% more 
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likely to cause fatalities in pedestrian crashes.67 And recent health studies have found even more 
health benefits from active mobility.68 

There are many more benefits — from water and land use reductions to the protection of biodiversity 
— which can only multiply as well.   

Exhibit 24: Compounding benefits of an efficient, circular battery and transportation system 

 

Actions toward circular self sufficiency 

Progress will not happen by itself; action is needed across the value chain. Different actors can 
accelerate change across the six solutions, from upstream to downstream:  

• Efficient mobility can be directly advanced by governments, which can improve urban 
planning and infrastructure for alternate modes of travel. Electric micromobility companies 
are also key, particularly in urban areas and developing economies. 

• More efficient vehicles will come from car companies with the help of governments, given the 
need to set ambitious targets and ramp up innovation. Reducing battery needs (for a given 
range) can also help to overcome EV profitability concerns, as in the case of the BMW i3 and 
Tesla Model 3.69,70 

• The development of new chemistries and higher energy density is driven by battery 
researchers and manufacturers, who, with ample government and private support, can 
accelerate the pace of innovation while designing for traceability and circularity.  
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• Extended battery lifetimes and second-life use will benefit from policy standards, as well as 
markets to improve diagnostics, warranty frameworks, and battery management systems. 

• Recycling also involves a combination of actors. Governments can provide a clear demand 
signal by setting standards for collection, recovery rate, traceability, and recycled content. 
Voluntary markets can also use green premiums to improve recycling revenue as well. 
Meanwhile, innovators can work to scale novel methods — particularly those that can reduce 
environmental burdens and improve economics via higher recovery rates and lower capital 
costs. Many more recommendations can be found in other RMI research.71  

Exhibit 25: Solutions, actions, and actors across the value chain 

 

A lot of room to go faster 

We can develop all six solutions faster and more effectively than our current analysis assumes.  

For example, on novel chemistries, we conservatively exclude pre-commercial technologies beyond 
sodium-ion, and we hold chemistry mix constant after 2035 — but innovations could come faster and 
deeper to displace critical minerals even more.72   

On energy density, the rate of improvement has accelerated in recent years73 — and if those recent 
trends continue, average density might improve even faster than we assume.  

On recycling, collection efficiencies are high but there is always room to reach 100%, as China 
regulated for EVs in 2018.74 Circular Energy Storage believes we may have already hit 90%.75 

On battery lifetime, research papers such as the previously mentioned one by Gaines et al. (2023) 
assume even longer battery lifetimes than we do, as well as more second-life uses in sectors beyond 
grid storage — particularly for LFP batteries that are becoming more and more popular worldwide.76 

On vehicle efficiency, recent analyses show that EV efficiency could increase nearly 2.5-fold by 2050,77 
or even 3–6-fold if today’s state of the art spreads more widely — implying that we can achieve deeper 
long-term improvements than the IEA scenario’s modest reduction in battery kilograms per car.78  

Exhibit x: Modeled accelerated trends outlook
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And on efficient mobility, analyses by Riofrancos et al. (2023)79 and the ITDP’s Compact City Scenario 
have even greater estimates for battery vehicle demand reductions from urban planning and mode 
shift.80 

It is clear that our accelerated trends case is by no means the upper bound of what is possible. We 
may well exceed it, especially as the benefits of an efficient and circular battery system start to 
manifest in real life, and the circularity race to the top intensifies.  

The opportunity is clear. Now, it is up to policymakers and the market to seize it. 

Managing the volatility to come  

We end, however, on one note of uncertainty. Mineral prices are highly volatile: in recent years, rare 
earths, lithium, nickel, cobalt, and even in part copper, have seen soaring and then crashing prices. 
Yet mining companies require manageable volatility, with average prices adequate to sustain 
exploration, production, and cleanup. If the six solutions’ combined progress is anywhere near as 
strong as we present here — and we think it’s likelier to overperform — then future critical-metals 
values and prices would be expected to decline.  

That could make the system ring like a bell, with fewer new mines (fitting lower future demand) but 
also less incentive to recover and recycle batteries (mitigated by cheaper recycling and, if needed, by 
stronger incentives or rules to ensure high recovery and recycling). In other words, the high-demand, 
high-price, high-mining scenarios originally assumed by most policymakers are likely to be reversed, 
but along the way, considerable volatility and disruption can be expected. Policymakers would do 
well to focus on how to make that future happen and how to help mitigate its financial risks and 
disruptions, so that all market actors, including mining companies, can more easily and happily invest 
in the circular future rather than fighting to protect the old. 
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Appendices 

Appendix A: Modeling demand for battery minerals 

Appendix A describes our modeling for the battery mineral outlooks that underpin this report.  

Total mineral demand is based on sectoral battery demand (from RMI X-Change Batteries81), sectoral 
chemistry mix (from BNEF’s Long-Term Electric Vehicle Outlook [2024]82 until 2035 and held constant 
thereafter, with RMI estimates for consumer electronics), and cathode mineral mass-per-energy 
conversions for each chemistry (from BNEF, IEA’s Global EV Outlook [2024],83 and RMI research). The 
BNEF chemistry outlook uses more than 20 distinct battery chemistries, though it does not currently 
include solid-state batteries or other non-commercial technologies. 

Total recycling volumes are calculated based on assumed battery lifetimes (for each sector and 
chemistry), recycling collection efficiencies (for each sector), and recycling recovery rates (for each 
mineral). All these parameters use BNEF’s Lithium-Ion Battery Recycling Availability Tool (2024),84 with 
additions from Gaines et al. (2023)85 for consumer electronics. Because we use whole-number lifetimes 
that increase over time, we smooth any "skipped" retirement years by splitting the prior year's 
retirements between that prior year and the "skipped" year. 

We also include estimates of second-life battery applications, which delay demand as well as recycling 
availability. We follow BNEF to assume that all second-life uses are for grid storage, with no reuse from 
consumer electronics. We then calculate the amounts based on the fraction of retired batteries that 
are available for second-life use (by sector and chemistry) and second-life lifetimes from BNEF and 
Gaines et al. (2023).86 If a chemistry’s grid storage demand is entirely met by second-life batteries in 
that year, we allocate any remaining available second-life batteries to other chemistries in that year. If 
second-life-eligible batteries are not used, they are retired after their first life as normal. If batteries are 
used in second-life applications, they are retired after their second life as a grid storage battery. 

Finally, we include BNEF estimates of production scrap rate and Gaines et al. (2023) estimates of 
recycling collection efficiency for scrap.87  We assume that scrapped batteries are available for 
recycling collection in the year in which they are scrapped.   

Exhibit 26: Flow chart for battery mineral demand model  
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Appendix B: Modeling continued trends 

In Appendix B we walk through the three levers of the continued trends, one at a time. First, we 
outline a pathway that linearly scales today's mineral demand with projected battery demand. Then, 
we demonstrate how each solution reduces mineral demand compared to this baseline scenario. 

Baseline: the simple linear scaling approach 

If we linearly scale mineral demand with battery demand, it simply scales 5.5x–8x by 2030 and ~12x by 
2050. This assumes we keep making batteries in exactly the same mix of chemistries, don’t improve 
densities, don’t recycle, and don’t improve the efficiency of vehicles or mobility.  

Exhibit 27: Battery demand and associated mineral demand under linear scaling  

 

The impact of continued battery chemistry changes 

We use the latest BNEF chemistry mix outlook to forecast the future chemistry mix in our continued 
trend scenario,88 shown on the left-hand side of Exhibit 27 in simplified groups of chemistries. 

A continued shift from conventional to novel nickel, LFP, and sodium-ion batteries significantly 
reduces cobalt and nickel demand (while slightly reducing lithium demand) compared to the simple 
linear scaling baseline. Cobalt also improves because most of future demand growth comes from the 
transport sector, rather than consumer electronics (whose batteries use 3x–10x more cobalt per cell 
than the cobalt-containing batteries in some EVs).89 

  

Source: RMI X-Change Batteries, RMI analysis 
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Exhibit 28: Impact of continued chemistry mix change on mineral demand 

 

The impact of continued battery energy density improvements  

In our X-Change: Batteries report, we analyzed the learning rate — the percentage by which energy 
density improved for every cumulative doubling in sales — of top-tier battery energy density, which 
was about 7% since 1990. In Exhibit 28 we show a similar analysis for the average energy density, 
based on BNEF battery data.90 

We find that the average energy density learning rate is 6%. We estimate that one-third of this is driven 
by chemistry change. Hence, the learning rate from energy density improvement (for a given 
chemistry) is about 4%. Exhibit 28 shows the impact of assuming this learning rate, instead of 0% in 
the linear baseline case.  

For simplicity, we assume that energy density improvements affect all minerals in the battery cell 
equally, resulting in the same percentage reduction for each mineral. If cell density improvements 
were exclusively made in the non-mineral parts of a battery, peak demand would be 10%–25% higher 
across our scenarios but the timing of peaks would be roughly the same. Long-term results would also 
be similar, if there was sufficient recycling capacity to manage the additional demand.  

  

Source: BNEF Long-Term Electric Vehicle Outlook (2024), RMI analysis                   Note: Part of the decline for cobalt comes from the sectoral redistribution of demand. 
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Exhibit 29: Impact of continued density improvements on mineral demand 

 

The impact of continued battery recycling  

Next, we layer in recycling to get to the net mineral demand — the total demand minus the recycled 
material. Net mineral demand is equal to the amount of minerals that will have to be mined.  

After accounting for recycling, net mineral demand is projected to peak in 2038 for lithium, 2034 for 
nickel, and 2028 for cobalt. This is driven by batteries sold today reaching their end of life in a decade 
from now and getting recycled back into minerals, offsetting the demand growth from new battery 
sales. 

Exhibit 30: The impact of continued battery recycling on the net battery mineral demand 

 

Source: BNEF Lithium-Ion Batteries: State of the Industry (2023), RMI analysis
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Appendix C: Modeling accelerated trends 

In Appendix C we lay out the assumptions behind the accelerated trend scenario. 

Faster battery chemistry mix change 

To model an accelerated chemistry mix change, we follow the BNEF “aggressive sodium-ion" case,91 
which ramps to 40% of passenger EV battery sales coming from sodium-ion by 2035. While ambitious 
for cars, this does not include increased ambition for other sectors which could also increase their 
projected sodium-ion uptake (such as grid storage or two- and three-wheelers).  

Faster energy density innovation 

As shown in our previous report, X-Change: Batteries, the pace of energy density improvements of top-
tier batteries is accelerating. That would suggest that the average energy density may well start rising 
faster as well, as the top-tier batteries of today are the average batteries of tomorrow.  

In the accelerated case, we increase the learning rate from 6% (of the average) to 7% to follow the top-
tier developments — keeping the average in step with the leader.92 

Better circularity 

For collection efficiencies, we ramp each sector halfway to 100% by 2030 (from current BNEF 
estimates) and 95% by 2040. We also ramp to today’s best-in-class mineral recovery rates by 2030, 
including 99.6% for nickel and cobalt93 and 95% for lithium.94  

Finally, we ramp to improved production scrap rates and scrap collection losses that are half of 
current estimates by 2030, assuming that best-practice production processes with those lower rates 
can propagate more quickly to new markets across the globe.  

Longer lifetimes 

We assume a two-year increase of transport-related battery lifetimes in line with the BNEF “high 
lifetime” case,95 as well as higher second-life use rates and lifetimes based on alternative assumptions 
from Gaines et al. (2023).96  

Efficient vehicles 

We follow the IEA (2024) “Downsized Case” and ramp to a 28% reduction in battery capacity per 
vehicle by 2030.97 This is more conservative than today’s state-of-the-art vehicles as well as the 
general values in some scenarios, such as the 42% from Riofrancos et al. (2023)98 or the 50%–60% 
reduction from NRDC and EPRI.99 As highlighted in section 3, improvement could come from a 
combination of vehicle efficiency as well as vehicle and battery right-sizing.  

Efficient mobility 

We follow the ICCT (2023) global “Avoid and Shift” scenario,100 which linearly ramps to reductions in 
freight fleet demand via load factor improvements (13% by 2040 and 16% by 2050) as well as 
passenger demand for vehicle miles traveled (VMT) via urban planning improvements and city-specific 
mode shift (9% by 2030, 28% by 2040, and 37% by 2050 for the global average). We convert VMT 
reductions to fleet reductions by using a factor of 5/9 as in KPMG (2020).101 These fleet reductions 
lower battery demand and hence mineral demand. 
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Appendix D: Benchmarking outlooks  

Our results are comparable to other outlooks, albeit with slightly more demand reduction driven by 
differences in scenario assumptions. Our “Continued Trend” scenario includes battery density 
improvements that are absent from many other outlooks, and the IEA assumes a future chemistry mix 
that would require more lithium and nickel than our scenarios (we use the chemistry mix outlooks 
from BNEF). The RMI “Accelerated Trend” scenario reduces demand by advancing the full suite of six 
solutions, so demand is naturally much lower than the other scenarios. Recycling quantities are 
relatively similar, with most differences explained by differences in demand.  

Given these outlooks’ more conservative assumptions (and lack of full data beyond the 2030s), net 
mineral demand in the IEA and BNEF base cases only peaks for cobalt, not for nickel and lithium. 
Other peaks might come eventually with a longer time horizon but are delayed by lower 
improvements in chemistry and density compared to the RMI scenarios.  

Exhibit 31: Benchmarked mineral outlooks for demand and recycling 

 

  

Note: APS = Announced Pledges Scenario; ETS = Economic Transition Scenario 
Source: IEA Global Critical Minerals Outlook (2024), BNEF Battery Metals Supply and Demand (2023), BNEF Lithium-Ion Battery Recycling Availability Model (2024), RMI analysis
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Appendix E: Further context on meeting peak mining demand 

As we show in section 4, meeting peak battery mining demand should be entirely feasible. In this 
section we provide some more details on the mineral mining outlook.  

The mineral mining challenge in historical context 

Without efficiency improvements or recycling, battery mineral mining would need to grow by about 
12% per annum for lithium, 4% for cobalt, and 3% for nickel through 2040, according to the IEA.102  

Such growth rates merely require a continuation of the historical growth rates. As shown in Exhibit 32, 
lithium, nickel, and cobalt all grew that fast — if not faster — over the past three decades than they 
would need to grow going forward.  

We fortunately have many solutions beyond mining to meet the battery mineral demand challenge — 
helping to break the historical need for rapid mining expansion. 

Exhibit 32: Historical mineral demand and IEA outlook 

 

It is highly likely we can close the gap to the peak 

As we discuss in section 4, there is only a small gap between today’s announced mining plans and 
peak demand. It is highly likely we can close that gap.  

The harder we have looked for mineral reserves, the more we have found. For example, the US 
Geological Survey estimates of total global lithium reserves today are over three times higher than 
what they were in 2000.103 Nickel and cobalt show a similar trend. 

Analysts have been updating mining supply outlooks upward as more capacity announcements come 
through. As shown in Exhibit 33, the total expected mining capacity for lithium in 2030 was increased 
by a factor of 2.4 between the 2019 and 2023 BNEF outlooks.104  

Source: USGS Lithium, Cobalt, and Nickel Commodity Summaries; IEA Global Critical Minerals Outlook (2024)
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At that pace of annual upward corrections, within a few years we may already see 2030 projections of 
mineral supply exceeding peak demand in 2034–2035. And the more we reduce that peak demand 
through efficiency and circularity, the quicker this will happen. 

Exhibit 33: Battery mineral limits keep getting updated 

 

  

Source: BNEF 2019, 2021, 2023 Battery Supply and Demand Outlook; USGS Lithium, Cobalt, and Nickel Commodity Summaries; IEA Global Critical Minerals Outlook (2024)
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Appendix F: Further notes on the six solutions 

Automotive obesity in EVs 

The trend toward larger and heavier EVs is slowing efforts to reach peak mineral demand. As shown in 
Exhibit 34, the EV sales share of larger vehicles (such as SUVs and pick-up trucks) has been increasing 
from 2018 to 2023 across regions. This share has risen seven-fold in the United States and five-fold in 
Europe, with increases in China and elsewhere as well.  

Larger vehicles require more battery capacity for a given range, which increases the demand for 
critical minerals such as lithium, nickel, and cobalt. This could delay peak mineral demand and 
circularity — but there is ample room to reverse these trends and quickly improve efficiency.  

Exhibit 34: EV sales by car size, 2018–2023 

 

Collection rates 

There is a wide divergence in battery collection rate estimates across sources. These gaps are driven 
by bad data availability, leading to frequent use of outdated and misinterpreted data.  

The recycling rate of lithium-ion batteries is often misrepresented at a mere 5%. But recent 
comprehensive studies, such as those published by Circular Energy Storage as well as BNEF, suggest 
that the actual rate of recycling was 59% in 2019 and potentially 90% or higher today.105 In our work 
we use the latest sectoral collection figures by BNEF, which range from 60% to 80% for most sectors.  

These considerable discrepancies highlight the urgent need for updated and accurate data to guide 
both policy and public perception, ensuring that the true potential of recycling practices is both 
understood and achieved. 

  

Source: IEA Global EV Outlook (2024)
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