

The Cleantech Revolution

It's exponential, disruptive, and now

Kingsmill Bond, Sam Butler-Sloss, Daan Walter

June 2024

Executive Summary

- The energy system is being transformed by the exponential forces of renewables, electrification, and efficiency.
- The orthodox view of slow change is wrong. New clean technologies beat old fossil commodities because clean technologies' costs fall over time on learning curves, they are universal, and they grow quickly.
- Exponential change has been remarkable in the past decade.
 Cleantech costs have fallen by up to 80 percent, while investment is up nearly tenfold and solar generation has risen twelvefold. Electricity has become the largest source of useful energy, and the deep force of efficiency has reduced energy demand by a fifth.
- **Change is led by China**. Half the growth in cleantech is from China, but exponential growth is also happening in the OECD and across the Global South as Asia electrifies.
- Red flags across the fossil fuel system. New fossil electricity capacity peaked in 2010, oil and gas capex in 2014, and internal combustion engine (ICE) car sales in 2017. Fossil demand peaked for industry in 2014, for buildings in 2018, most likely for electricity in 2023, and will shortly peak in transport.
- The drivers of growth are more powerful than the barriers. Falling cleantech costs, the energy security of eternal renewables, Chinese leadership, and a race to the top will continue to overwhelm a fragile fossil fuel system which wastes two-thirds of its primary energy and fails to pay for its externality costs.

- So exponential growth of cleantech will continue. By 2030, we will be installing 1,000 GW of solar a year and selling 6,000 GWh of batteries a year, making possible the COP goal of tripling renewable capacity. Electrification rates will double to 0.5% a year, and efficiency gains will increase to over 3% a year.
- The fossil fuel system faces inexorable decline. Renewables
 will drive fossil fuels out of electricity generation, electrification
 will push fossils out of final energy, and efficiency will reduce
 fossil waste. Some 75% of fossil fuel demand is exposed to
 rapidly growing cleantech alternatives, so stranded assets are
 inevitable.
- Wider implications of change. The goals of the Paris
 Agreement are feasible, and the Global South will continue to
 leapfrog to cleantech.
- This is the pivot decade. When cleantech costs become irresistible, the renewable capacity is built, fossil fuel demand reaches the end of its plateau, and the transition is priced into markets.
- **Now is the time to act**. We need to build out renewables and electrify energy use, make good bets on small modular technologies, and harvest the enormous efficiency opportunity. The direction of change is inevitable, but the speed is up to us.

Index

- 1 Introduction
- **Exponential change so far**
- The era of peaking demand
- 4 Why rapid change will continue
- 5 Implications for the energy system
- 6 Wider implications of the transition
- **7** What we need to do now

Index

Introduction

- There are two main perspectives on the energy transition: the old incumbent view of business-as-usual; and the new insurgent view of exponential change.
- At heart this is the longstanding battle of commodities versus technologies. Design and technologies beat commodities because they enjoy learning curves and are limitless. So costs fall over time, and growth is exponential.
- New energy comes from manufactured, modular, scalable, clean technologies; old energy is from centralized, heavy, dirty commodities.
- Old energy forecasting has failed in the face of the new energy reality. Linear forecasts constrained by barriers to growth have consistently been overwhelmed by exponential change.
- There are three key levers in the energy transition: Renewables; Electrification; and Efficiency.

The two visions of the energy future

The **old commodities** narrative of business-as-usual: reducing fossil fuel demand will be slow, expensive, and painful

The old guard's energy outlook

The **new technology** narrative of exponential and beneficial change: a shift to a cheaper, faster, and distributed energy system

The new technology insurgent's energy outlook

Technologies beat commodities on costs

Manufactured technologies (e.g., solar and wind) enjoy cost learning curves; (fossil) commodities don't

Historical costs of energy sources

Technologies beat commodities on speed

Manufactured technologies grow fast; commodities grow slowly

Electricity generation after reaching 100 TWh

Source: Ember Global Electricity Review 2024; Wind and solar generation data from Ember annual electricity data, nuclear, gas, coal and hydro generation data from Pinto et al. (2023). This graphic is inspired by a chart from Shell featured in Nat Bullard's deck. In 2024, nuclear has a 10–15 year lead time.

New energy is fundamentally

THE AGE OF CARBON

Finite

Fiery, heavy molecules

Geographically concentrated

Wasteful

Continuous material flow

Analogue

Trillions of dollars of annual rents to oligarchs

Malthusian commodity-based system

Concentrates power

Kills millions from air pollution

Produced the greatest externality in history¹

different to old energy

THE AGE OF RENEWABLES

Eternal

Obedient, light electrons

Available everywhere

Efficient

Circular

Digital

No superprofits

Schumpeterian technology-based system

Localizes and distributes power

Saves millions from air pollution

100 times lower impact on nature

Incumbents have underestimated the speed of change

Even neutral actors modeled in linear terms. But change has been exponential

There are three big levers of change

Renewables, electrification, and efficiency are rapidly transforming the energy system

Global energy demand in 2022

Index

2 Exponential growth so far

- There is clear evidence three drivers of changes are growing exponentially: renewables, electrification, and efficiency.
- Cleantech costs fall by around 20% for every doubling in deployment and have fallen by up to 80% in a decade.
- Capital is pouring into cleantech. Getting to the first trillion of annual investment took decades; the second trillion will take only 4 years.
- Solar generation is doubling every 2-3 years and battery storage every year. Solar is poised to deploy the largest amount of generation capacity, and batteries are about to overtake pumped hydro.
- The supply chain is already in place for enough solar and batteries for net zero.
- Electricity supply has been growing inexorably for a century and is now the largest supplier of useful energy.
- Efficiency is the deep force of the energy transition, saving one fifth of total demand over the last decade.
- China leads the exponential story and is poised to be the first major electrostate. Exponential change is happening in the OECD and across the Global South as Asia leapfrogs the OECD in electrification.

Cleantech costs have fallen rapidly

Clean technology costs fall by around 20% for every doubling of deployment — Wright's Law

Capital has poured into cleantech

The first cleantech trillion took decades; the second trillion will happen in four years

Cleantech investment

Leading to exponential growth in renewables

Global solar generation has been doubling every 2–3 years, and battery storage capacity every year

Solar and batteries are taking over

Solar will shortly overtake every other type of capacity, and battery storage will leapfrog pumped hydro

The supply chain is in place

Source: IEA, BNEF.

Companies already plan to construct more solar and battery capacity by 2030 than is needed to reach net zero

A century of electrification

Buildings and industry have been electrifying for 120 years; now transport joins the party

Electricity share of final energy demand by sector

Electricity is the new King of Energy

Electricity is the largest supplier of useful energy

Useful energy supply

Note: All sectors excluding non-energy uses. Estimates for useful energy differ, and here we have taken data from IIASA, which has prepared the most detailed data we have seen. Source: IIASA.

We are poised to electrify the rest of the system

The global stock of EV cars and digital devices has been doubling every 2 years

Efficiency is the Deep Force of change

Efficiency gains since 2010 have reduced energy demand growth more than any other factor

Efficiency gains

China has become the first major electrostate

China has been electrifying at 10 percentage points per decade, nine times faster than the rest of the world

Electricity share of final energy

Source: IIASA, IEA WEB. WEB defines final energy slightly differently than WEO.

Super-fast growth in China drives change

In a decade, solar generation increased by 35 times, wind 9 times; EVs and batteries scaled even faster

Exponential growth is also happening in the OECD

Over the past decade, solar generation went up 7 times, wind 3 times, and EVs sales up over 50 times

Exponential growth in emerging economies

The adoption of superior technology is not confined to the Global North

Electric Asia

Asia is leading the charge to electrify everything

Index

3 The era of peaking fossil fuel demand

- Pessimists keep raising barriers to change; optimists keep solving them.
- Early warning signals for fossils include peak new fossil fuel electricity capacity (2010), peak capex for oil and gas (2014), peak ICE demand (2017), and peak per capita fossil demand (2012–18).
- Global fossil fuel demand for industry peaked in 2014, and in buildings in 2018.
- Fossil fuel demand likely peaked in electricity in 2023 and will peak in transport before the end of the decade.
- OECD fossil fuel demand peaked in 2007, and every major area of demand has peaked in the United States.
- China is the pivot nation in the transition away from fossil fuels, and most areas of demand have clearly peaked there.
- Peaks are showing up across the Global South, from South America to South Africa and Thailand.

Pessimists sound clever; optimists change the world

The incumbents have been predicting the end of the transition for decades

Pessimist's and optimist's take on solar and wind uptake

Flashing red lights all over the fossil fuel system

As **growth** turns to **decline**

The era of peaking fossils is here

Building and industry peak fossil fuels are behind us; electricity and transport are peaking now

Fossil fuel demand by sector

Peak fossil fuel demand in electricity

Solar and wind provided 500 out of 600 TWh of demand growth in 2023, and will break through average growth this year

Change in electricity generation

A plateau in road oil demand

Decades of growth stagnate before turning into rapid decline

Road oil demand

Road share oil demand for transport, 2023

Road share oil demand, 2023

OECD fossil fuel demand peaked a generation ago

OECD fossil fuel demand for final energy peaked in 2005 and for electricity generation in 2007

United States — every major sector is past peak fossil demand

Fossil fuel demand across sectors peaked more than 15 years ago

China is the global pivot nation

When China peaks, the world peaks

Primary fossil fuel demand by region

Fossil fuel demand is peaking across the Chinese system

Peaks in industry and buildings are behind us, electricity peaked in 2023, and transport is coming soon

The first fossil peaks in the Global South

The Global South is not condemned to choose technologies the North is abandoning

Index

4 Why rapid change will continue

- The three drivers of change renewables, electrification and efficiency are self-reinforcing.
- Cleantech costs will keep falling at around 20% for every doubling of deployment as technology gets better and spreads around the world.
- Fossil fuels are vulnerable because they have huge unpaid externalities (up to \$7 trillion a year), get large subsidies (\$1 trillion a year), and waste two-thirds of their energy.
- Cleantech provides energy security: 86% of people live in fossil-importing countries today; renewable resources are 100 times larger than fossil fuels, and available everywhere.
- The world's largest energy consumer, China, lacks oil and gas, and cleantech is a
 path to leadership, clean air, and zero emissions. So, China will continue to deploy
 cleantech rapidly.
- There is a race to the top as others try to catch up. Cleantech is now 10% of global GDP growth, and there is a race to lead the cleantech industries of the future.
 Meanwhile, as the world burns, so policy pressure will rise.
- Clean technologies will continue to follow S-curves, cascading across sectors and geographies. Change at the frontier is hard, but most countries can copy the leaders.

Three drivers of self-reinforcing change

There are positive feedback loops between renewables, electrification, and efficiency

Cleantech keeps getting better

More patents, higher battery density, more solar and wind generation per unit, economies of scale, new ideas, ...

Cleantech costs will continue to fall

Solar, the cheapest energy source in history, will halve in price by the end of the decade

The fossil fuel system is fragile

Fossil fuels impose major externalities, while collecting large rents and subsidies

In annual waste from energy efficiency losses

of people live in fossil fuelimporting countries

In annual fossil fuel rents

Annual air pollution deaths as the result of burning fossil fuels

In annual explicit subsidies (\$7 trillion with implicit subsidies)

Of greenhouse gases come from burning fossil fuels

Fossil fuels are extremely inefficient

Two thirds of all fossil fuel primary energy is wasted in thermodynamic and system losses

Energy system flows, EJ, 2019

Cleantech is 3 times more efficient

Cleantech is around 3x more efficient than fossil technologies across applications

Renewables provide energy security

They are 100x bigger than fossil fuels, and every country has them

Renewable potential as a multiple of energy demand

Source: Carbon Tracker, IRENA, Comtec, NREL, Solargis, RMI.

Share of population living in countries that import fossil fuel

Share of population endowed with replete or better renewable resource

The world's largest energy consumer is moving fast

China is leading the way to patent, make, and deploy the energy technologies of the future

Everyone wants a piece of the action

Cleantech is now a key driver of GDP growth all over the world

Contribution of cleantech to GDP growth, 2023

The world burns...

Record temperatures

...so policy pressure will continue to rise

Change is not uniform, but it is relentless at a global level

47

Cleantech adoption resembles that of the internet

Adoption moves from early adopters to laggards up a series of S-curves. This time anyone can be a leader

Share of population using the Internet

Solar and wind as a share of generation

S-curves as usual, not business as usual

We've seen this movie before. We know how technology shifts work

Individual products

Technological adoption by household in the United States

Rapid exponential growth along S-curves is a standard characteristic of successful new technologies.

Infrastructure systems

Share of maximum size in the United States

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

S-curve-type growth even applies to infrastructure.

Source: Comin & Hobijn via OWID (L); Grubler (R).

Technologies cascade across geographies

We should focus on the opportunities before our very eyes, not on potential end-game barriers

Technologies cascade across sectors

Every sector has low-hanging fruit at the frontier

The ceiling of the possible keeps rising

Leading countries and companies keep opening up new opportunities for the rest of the world

Solar and wind as share of electricity generation

Index

5 Implications for the energy system

- If change continues on S-curves, then by 2030 we expect solar sales of over 1,000 GW a year and battery sales of over 6,000 GWh a year.
- S-curves imply that by 2030 solar and wind generation will triple to over 12,000 TWh and EVs will be two-thirds of car sales.
- The annual electrification rate is likely to more than double to 0.5% in 2030 as transport joins the party, and success in China drags up electrification rates elsewhere.
- Annual efficiency gains are likely to double from the 1.5% average of the past two
 decades to at least 3% as the result of the rising share of renewables,
 electrification, and a greater focus on end-use efficiency.
- Renewables will push out fossil electricity, electrons will push out molecules, and efficiency will reduce waste. In a typical X shaped pattern.
- Over 75% of fossil fuel demand today is threatened by rapidly growing cleantech alternatives.
- Fossil fuel demand will be squeezed between efficiency and cleantech. The demand plateau will last until the end of the decade, and then clear decline will set in.

Super-fast growth in solar and battery sales

Solar sales are on track for over 1,000 GW per year by 2030

Battery sales are likely to be over 6,000 GWh a year by 2030

Global solar sales

Global battery sales

Renewables will keep rising up their S-curves

As the renewable revolution will continue to solve barriers to change

The electric vehicle domino effect will continue

Where cars go, vans and trucks follow

The electric vehicle domino

Electrification will pick up speed

Transport is joining the party just as electrification picks up in other sectors

Efficiency will be pulled up the S-curve

Faster cleantech deployment will speed up efficiency improvements

Electricity generation efficiency

2000

2010

Outlook 100% 90% 80% 70% 60% 50% 40% 30% 20% Driven by renewables which 10% are about 2.5x more efficient than fossil-fueled electricity 0%

2020

End-sector efficiency

1990

2040

2050

2030

Tripling renewables by 2030

S-curves suggest we will triple renewables, and more than double electrification and efficiency rates

A new energy system is coming

Fast or faster; either we are off the fossil plateau by the late 2020s or by the early 2030s

In with the new, out with the old

Renewables push out fossil electricity, electrons push out molecules, and efficiency reduces waste

We have seen this X shaped pattern before

An X shaped technology transition is standard so we should not be surprised

Industry: Cast iron to steel

Ships: Sailing ships to steamships

Land transport: Horses to cars

Lighting: Gas to electricity

Power: Steam to electricity

Heat: Coal to gas

The largest areas of fossil fuel demand are most at risk

Over 75% of fossil demand today is under direct threat by exponentially growing cleantech

Fossil fuel demand gets squeezed

The growth of cleantech and rising efficiency will squeeze out fossil fuel demand

Primary energy supply

So fossil fuel demand is on the brink of rapid decline

Fossil fuel demand faces a cliff edge. The key variable is the length of the plateau — short or very short

Index

6 Wider implications of the transition

- Paris is achievable because we are at the pivot point in the 300-year history of fossil fuel use.
- The race for the top is on fire. A battle for leadership is taking place in every area
 of energy supply and demand. Competition will drive change.
- The Global South can continue to leapfrog to cleantech. Witness the success of Kenya, Barbados, Morocco, Vietnam or Bangladesh.
- We are at peak waste, so we can reduce the pressure on nature.
- The great capital reallocation will continue. Capital will shift into areas of growth and out of those in decline.
- Stranded fossil fuel assets will result from the gap between the expectations of incumbents for business-as-usual and the reality of exponential change.
- Since the fossil fuel system is huge (\$50 trillion of fixed assets), this asset stranding has profound implications for the financial system.
- As China is leading this transition, we need to benchmark to China.
- The debate will be very different by 2030 and the transition will be priced into markets.

Paris is feasible

This is the pivot decade from growth to decline

Global CO₂ emissions from energy

Source: Global Carbon Project, OWID (1850-2023), Rystad Energy to 2023-2070; RMI illustrative onwards. Paris here means the goal of the 2015 Paris Agreement to keep global warming well below 2°C.

The race for the top is on fire

Nobody wants to miss out on the technologies of the future

Note: Solar, wind, and EVs in an S-curve outlook based on RMI modeling; electrification is from BNEF's ETS. Source: Energy Institute, IEA, BNEF, RMI analyses. For more see X-Change: The Race to the Top.

The Global South can continue to leapfrog

Falling costs open up new opportunities to bring energy to those who lack it

We are at peak waste

So we can massively reduce the strains of the energy system on nature

We are halfway through a Great Capital Reallocation

The required growth in investment is achievable, and reallocation from fossil to cleantech is well underway

The fossil fuel system faces trillions in stranded assets

Assets get stranded at the top of the market, and disruption is driven by price changes

We need to change our framework of reference to China

China is leading this technology revolution, and others need to catch up or fall behind

The debate will be very different in 2030

When the facts change, people change their minds. Repricing follows.

Area	2015	2024	2030
Cost of renewables	Expensive	Cheap	Super cheap
Societal pressure for change	Niche	Moderate	Intense
EVs	Toy for the rich	A second car for the rich	A cheaper car for all
Renewables	Grid can't take 20%	Grid can't take 70%	Leaders enjoy cheap energy
Net zero	<1% of world has targets	90% of world has targets	90% of world has plans
Global fossil fuel demand	Growth	Plateau	Decline
Hard-to-solve areas	CCS	Lots of technological solutions	Lots of commercial solutions
Geopolitics	Climate makes good speeches	Renewables nice to have	Renewables a key tool of power
United States vs. China	China pollutes too much	China makes too many climate solutions	China and United States compete
Financial markets	ESG	Carbon offsetting	Minsky Moment
Corporations	Greenwash	Green premium	Green prize

Index

What we need to do now

- This is the pivot decade when cleantech manufacturing capacity is built, renewables get too cheap to resist, and fossil fuel demand reaches the end of its plateau.
- Focus on the signal not the noise. We need to prepare for change, not hide behind denial.
- We need to continue building out the renewable system, speed up electrification in the OECD, and increase focus on efficiency.
- We should make good bets on solutions that work: small modular technologies and efficiency measures. Equally, we need to avoid high-cost, inefficient, and unproven bets.
- Companies need to move from tactics to strategy.
- Investors should retool for the megatheme of the energy transition.
- Energy modelers need to change their approach or become stranded experts.
- And we need to get on with it. We are in a race between climate and economic tipping points. The direction is inevitable, but speed is up to us.

The 2020s are the pivot decade

You snooze, you lose

Manufacturing capacity is built: Batteries

15-TWh manufacturing capacity

9 60% Faster 40% 3 20%

2015

2020

2025

2030

2028

2030

Cleantech goes up the steep part of the S-curve: EV

100% EV share of car sales

Renewables get too cheap to resist: Solar

Fossil fuel demand enters terminal decline

2022 2024 2026

Focus on the signal not the noise

There are always barriers to change. Those who solve them get rich.

EV adoption versus headlines

Build, baby, build...

If you want to stay in the game, you need to deploy renewables and electrify end-use demand, and fast

Speed up electrification in the OECD

Redesign electricity markets to pass the low cost of renewables onto industry and households

Electricity share of final energy Electricity multiple of natural gas prices in 2023 3 times higher electricity vs. efficiency-adjusted gas price 30% China France 25% **Spain** In the US & Europe, Italy natural gas is cheaper than 20% electricity Germany Price parity 15% In China. electricity is cheaper than gas 10% China 2010 2010 2020 US Western Europe

Make good bets on the technologies of the future

Focus on modular technologies with steep learning curves; avoid expensive and hard-to-deploy technologies

	Complex	Standardized complex product systems e.g., Combined-cycle gas turbine power plants	Platform-based complex product systems e.g., Small modular reactors, carbon capture & storage	Complex product systems e.g., Nuclear power plants, BECCS	
Degree of design complexity	Design- intensive	Mass-produced complex products e.g., Electric vehicles	Platform-based complex products e.g., Wind turbines, concentrating solar power, standardized asset retrofits	Complex-customized products e.g., Biomass power plants, geothermal power	
	Simple	Mass-produced products e.g., Solar PV modules, batteries	Mass-customized products e.g., Rooftop solar PV	Small-batch products e.g., Bespoke asset retrofits	
	·	Standardized	Mass-customized	Customized	

Harvest the vast fields of efficiency

The efficiency potential is huge, and proven

Energy demand from primary energy to value added 2019

Emissions avoided by efficiency, in context

Source: IEA, IIASA, RMI assumptions, Amory Lovins.

Companies: time to move from tactics to strategy

The energy transition is not a box-ticking exercise

Company types and actions

Туре	Future	What to do	
Fossil fuel producers	Decline of core products	Reinvention; rundown	
Heavy fossil fuel users	Need to find a new energy source	Retool for the new energy source	
Renewable companies	Rapid growth, rapid innovation	Innovate and expand	
Entrepreneurs	A brave new world of opportunities	Solve barriers and get rich	
Others	A new environment	Rethink areas of focus	

Finance: Retool investment strategies

The energy transition is a megatheme, like the industrialization of China or the growth of the internet

Go long-short winners and losers from **Beware of fossil** Allocate capital to change. Disruption is Minsky moments the sectors with growth coming decade coming, so separate reality from lip service **Exit sectors in** Pick winners. The decline. Or trade the **Gartner hype curve is** volatility on the way the standard tool down

Adjust energy models to capture reality

Incumbent modelers need to up their game or become stranded experts

We are in a race between climate and economic tipping points

On the one hand, **climate** tipping points are coming faster than expected...

Climate tipping points

Source: Lenton et al based on IPCC reports

...on the other hand, climate solutions are scaling faster than most analysts thought possible.

Actual solar additions vs. consensus outlooks

Direction is inevitable,

There is both inevitability and agency.

but speed is up to us

As time is short there is every reason to act.

About RMI

RMI is an independent nonprofit, founded in 1982 as Rocky Mountain Institute, that transforms global energy systems through market-driven solutions to align with a 1.5°C future and secure a clean, prosperous, zero-carbon future for all. We work in the world's most critical geographies and engage businesses, policymakers, communities, and NGOs to identify and scale energy system interventions that will cut climate pollution at least 50 percent by 2030. RMI has offices in Basalt and Boulder, Colorado; New York City; Oakland, California; Washington, D.C.; Abuja, Nigeria; and Beijing.

Authors

Kingsmill Bond, kbond@rmi.org
Sam Butler-Sloss, sbutlersloss@rmi.org
Daan Walter, daan.walter@rmi.org

Acknowledgments

With thanks to: Amory Lovins, Hannah Ritchie, Joseph Zacune, Will Atkinson, Chiara Gulli, Laurens Speelman, Ita Kettleborough, and Harry Benham.

Related

Sign up to our distribution list

RMI – The World Re-Energized

RMI – The Peaking Series

