

Clean Repowering: How to Capitalize on Fossil Grid Connections to Unlock Clean Energy Growth

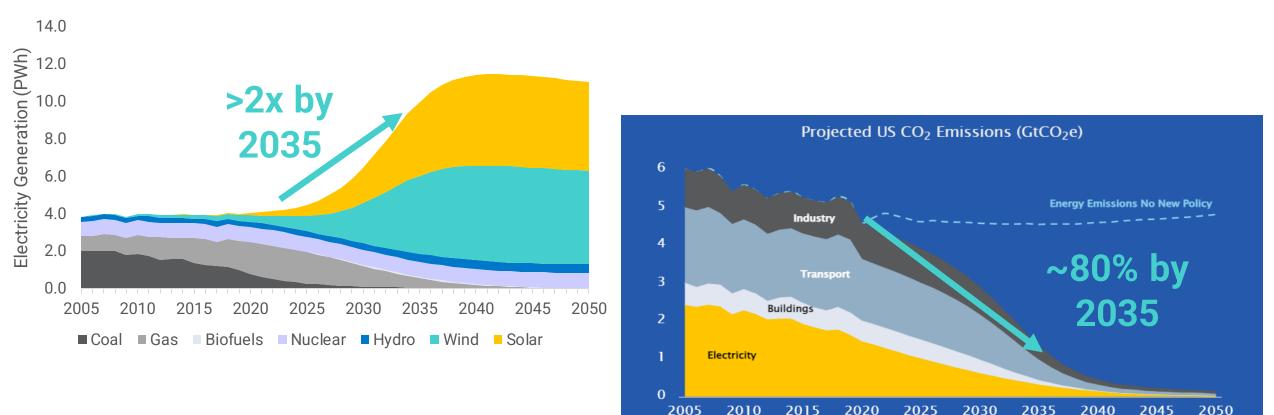
RESEARCH AND ANALYSIS SUMMARY

JANUARY 2024

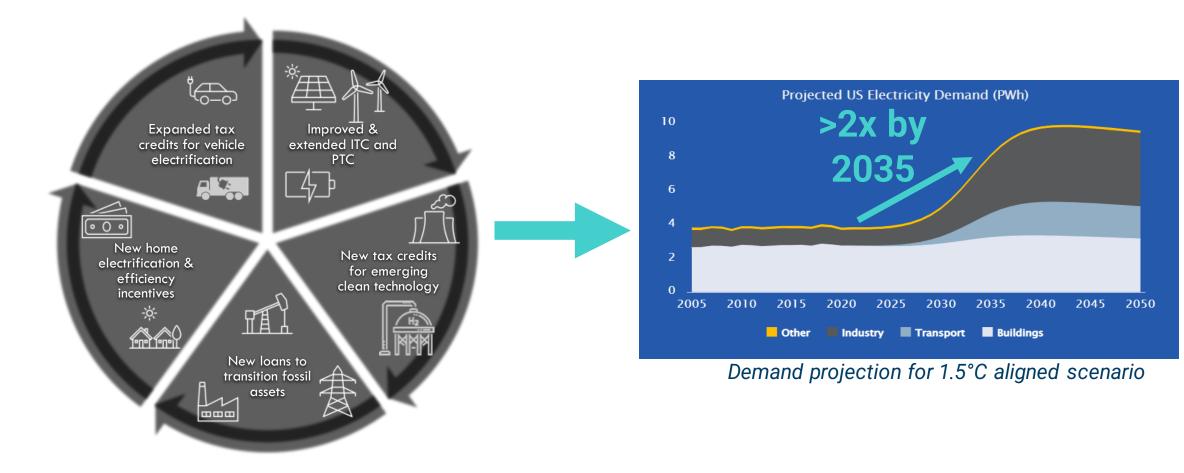
Clean Repowering: What it is and why it's needed

Executive Summary

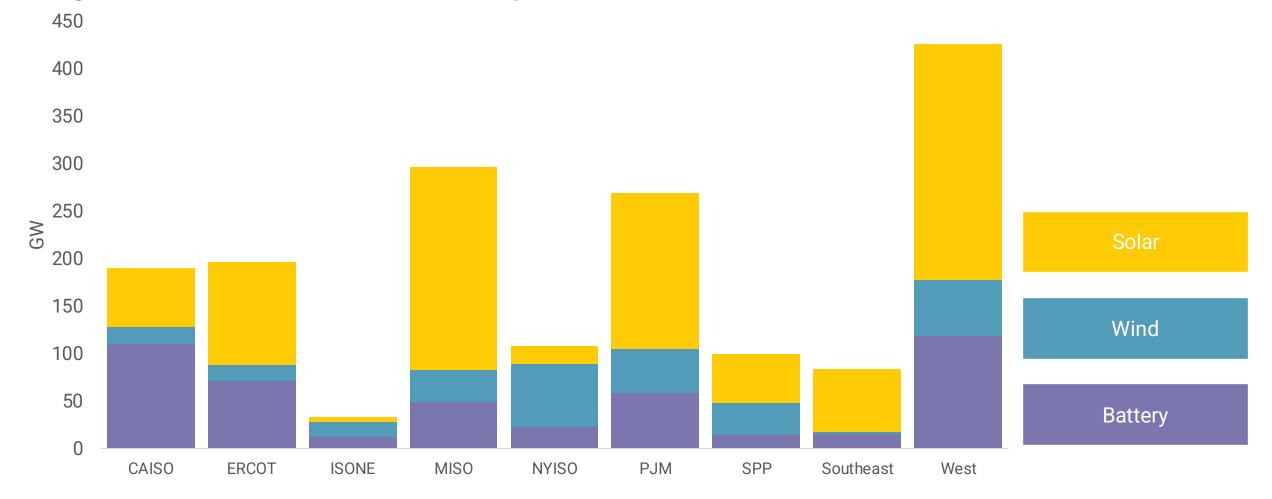
More than 1.3 TW of proposed clean energy projects are stuck waiting years for permission to connect to the grid, while the demand for reliable, clean energy is skyrocketing.


Clean repowering — siting clean energy alongside existing fossil generators to leverage their grid connections via much faster surplus or generator replacement processes — is a near-term fix to help break this logjam.

We have identified 250 GW of economic clean repowering opportunities on an asset-by-asset level across the country that make use of new IRA incentives and surplus interconnection or generator replacement processes.


These are "no-regrets" opportunities, as they can reduce NPV of system costs by \$21B through 2054 relative to BAU without impacting grid reliability, and are primarily concentrated in MISO, PJM, and the Southeast.

Establishing a generator replacement process in regions currently lacking a streamlined process could further expand this opportunity, unlocking up to 36 GW in PJM and ERCOT.


Achieving 1.5°C alignment requires the US electric sector to reliably meet ~2x demand while reducing emissions by 80% by 2035 - not including AI-driven growth

The Inflation Reduction Act (IRA) provides powerful incentives to supercharge both clean electricity deployment and electrification demand

But US interconnection queues now have over 1.3 TW of renewables and storage with 3–5 years of wait time – a key barrier to 1.5°C alignment

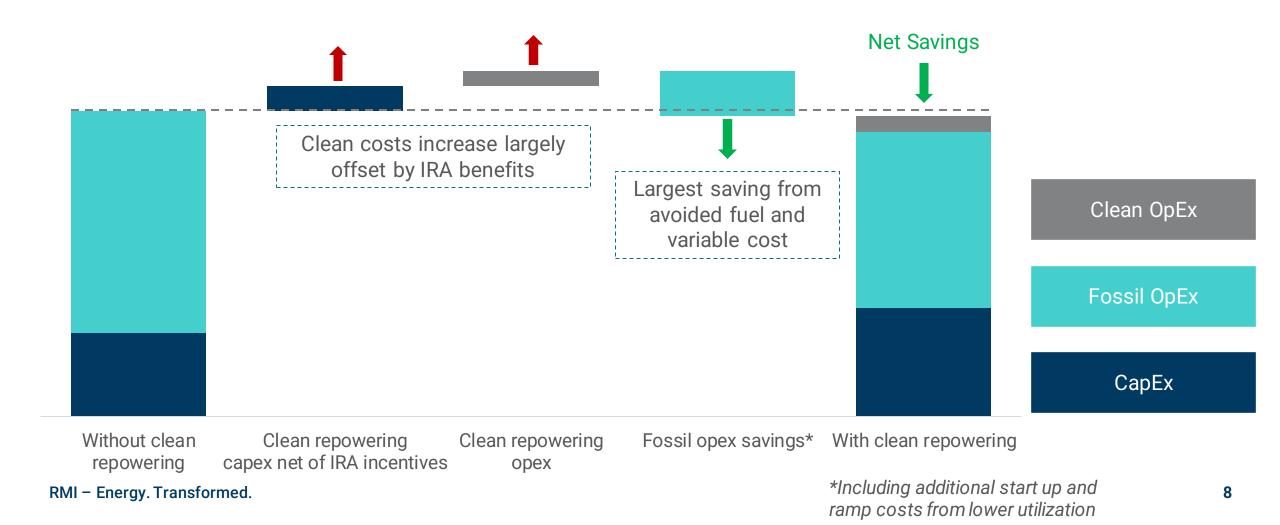
RMI - Energy. Transformed.

Clean repowering — deploying clean energy using existing fossil plants' interconnections — can accelerate interconnection of cost-competitive clean energy

Regional interconnection rules include two cases that allow for a more streamlined process

Two key **IRA incentives** improve the economics

Surplus interconnection service: adding new generation at the site of an <u>existing</u> plant that would continue operating


Energy community tax credit bonuses: +10% on ITC or PTC

Generator replacement: adding new generation at the site of a <u>retiring</u> unit or plant

DOE Energy Infrastructure Reinvestment (EIR) Loans: up to \$250B

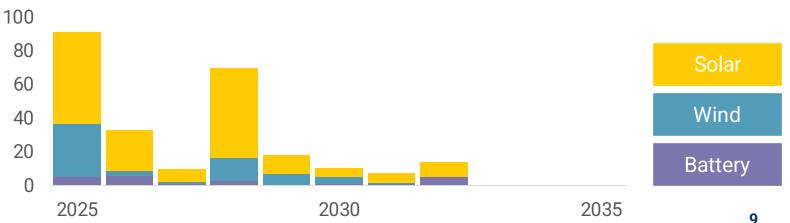
Clean repowering creates savings by reducing fossil operating costs and offsetting clean capital costs with IRA incentives

Clean repowering is a 250 GW "no-regrets" option, as it can reduce system costs by an NPV of \$21B over a 30-year planning horizon while adding resources to improve reliability

\$100

\$0

2025


Affordability

- Avoids high costs of fossil fuel use and new transmission build
- Reduces interconnection process costs

Clean repowering annual savings (\$B) \$700 \$600 \$500 repowering \$400 \$300 \$200

2030

Clean repowering annual deployment (GW)

Clean

savings

Clean

repowering

2035

Reliability

- Minimizes grid impacts of new generation + retirements
- Faster interconnection can help mitigate near-term reliability risks

RMI – Energy. Transformed.

Plans for clean repowering projects are in development nationwide, and growing

Xcel Energy plans to replace coal plants in Minnesota and Colorado with solar and longduration iron-air storage

Vistra replaced its Moss Landing natural gas plant with 750 MW of 4-hr battery storage

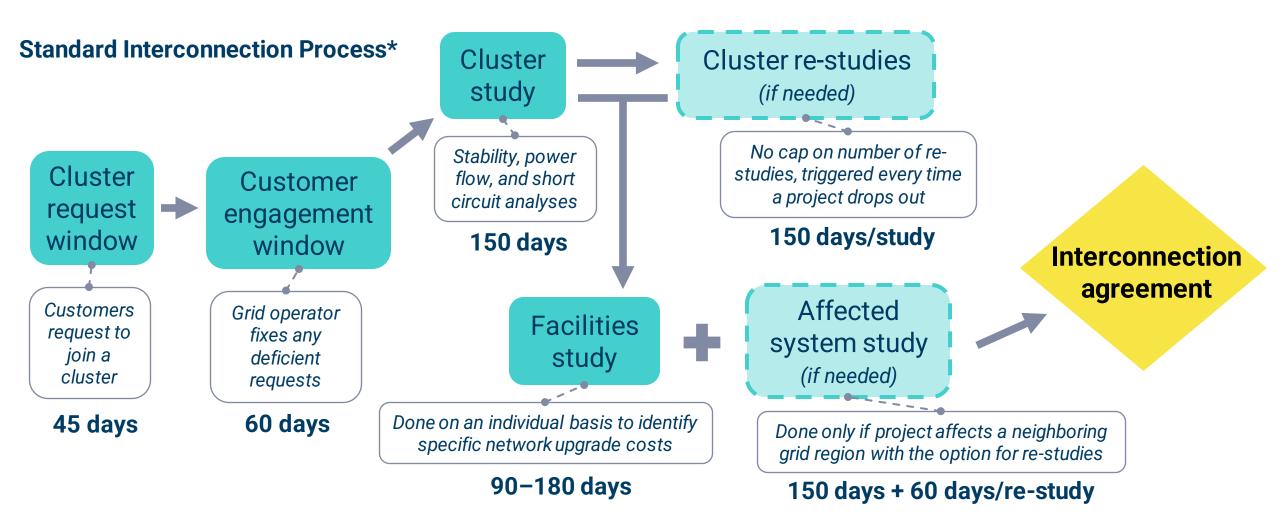
PNM is prioritizing storage resources that "leverage existing interconnections" in its latest RFP

RMI – Energy. Transformed.

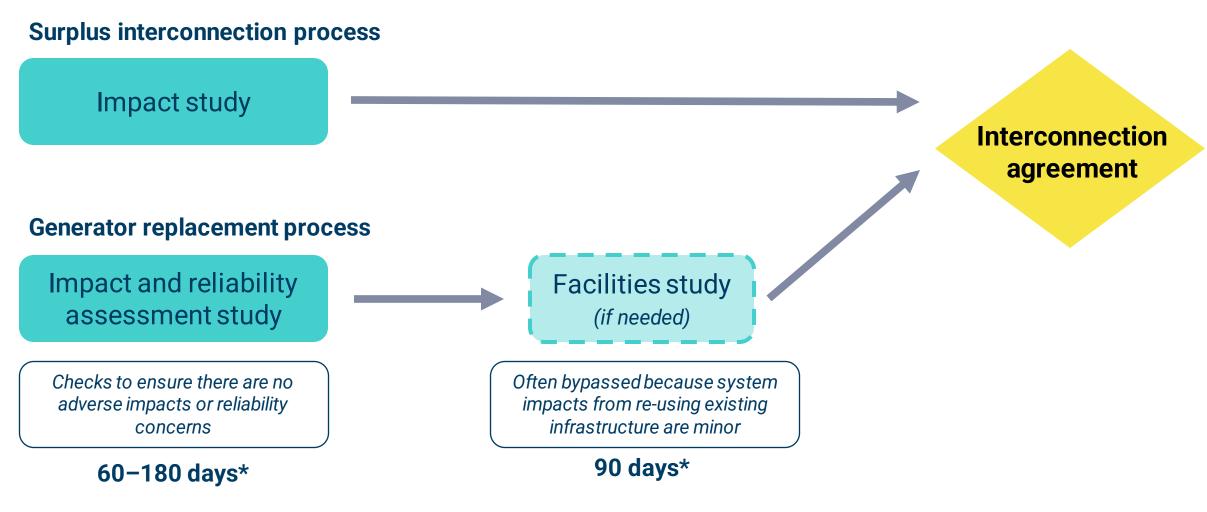
0

Xcel Energy is adding solar to two of its oldest natural gas units in New Mexico and Texas

Vistra is retiring its Joppa and Edwards coal plants and replacing them with battery storage Alliant Energy received a grant from the DOE Office of Clean Energy Demonstrations to pilot a **compressed** CO_2 energy storage project at its Columbia Energy Center


Several offshore wind projects along the East Coast are looking to use surplus or retiring fossil plant interconnections to connect to the grid

> **Elevate Renewables** is deploying storage at existing natural gas generation facilities and currently has a pipeline of 5 GW across 25 locations in the Mid-Atlantic

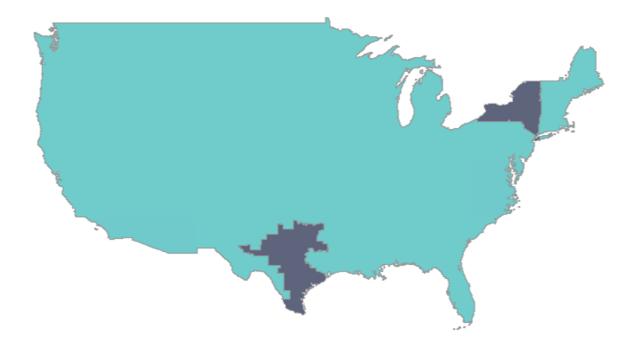

AES Indiana is adding 200 MW of storage (in addition to natural gas) to its retiring Petersburg coal-fired power station

Clean Repowering: How and why interconnection fast-tracks work

The standard interconnection study process has been a major source of project delays and costs

"Fast-track" interconnection processes are shorter and simpler than the standard process

* Times vary by region and are not binding


RMI – Energy. Transformed.

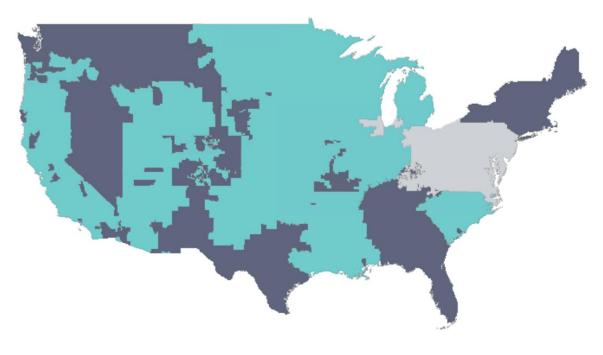
Surplus interconnection service requests are governed by a federal standard (FERC Order 845)

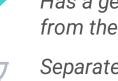
Key Components of FERC Order 845		
Priority is given to existing generation owners	No network upgrades allowed	
Must not exceed total interconnection service of existing plant	Interconnection rights expire within one year of existing facility retiring	

All regions in the United States except for **NYISO** and **ERCOT** follow Order 845 requirements

- **NYISO** received a waiver based on its treatment of existing grid resources
- **ERCOT** is not FERC-jurisdictional and only has a process for adding storage to solar PV resources

Has a surplus interconnection process

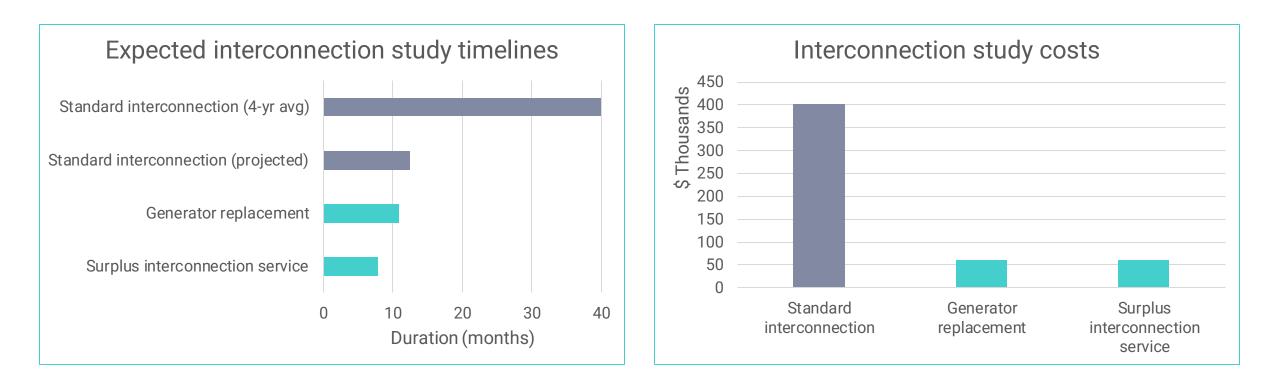



Does not have a surplus interconnection process

Generator replacement processes that are separate from the queue exist in some regions but not others

- **MISO** set the standard in 2018 with its generator replacement interconnection process
 - Requests must be made at least one year prior to retirement and new generation must come on line within three years
 - Initial process included restrictions on plant ownership that have been amended and relaxed over time
- CAISO and ERCOT have more limited processes that allow for in-kind replacements only
 - CAISO makes an exception for batteries at fossil plants
- PJM and ISO-NE do not have defined processes, yet
 - **PJM** initiated a stakeholder dialogue to consider the creation of a process in July 2023

Spreading generator replacement processes to new regions can increase the scale of the opportunity RMI – Energy. Transformed.



- Has a generator replacement process separate from the standard interconnection queue
- Separate generator replacement process pending

Does not have a separate generator replacement process

Both "fast-track" processes significantly reduce interconnection study timelines and costs

Data sourced from MISO; timelines and costs are comparable across regions

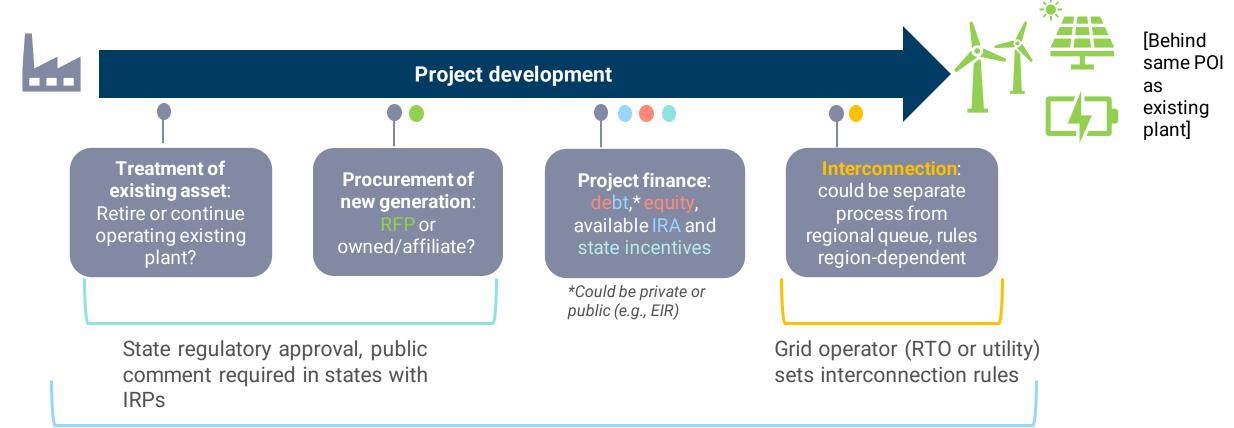
What is the case for a separate fast-track interconnection process?

Projects are connecting to the grid at the same point of interconnection (POI) as existing or retiring generation.

The existing generation has a set level of **capacity injection rights** that it may not be fully utilizing or will no longer be utilizing, if retiring.

The new on-site generation can efficiently utilize the spare capacity injection rights, **minimizing impact on the grid** compared to new "greenfield" generation.

Given differences in technologies and capabilities of the new generation, some level of interconnection study is needed, but the **study process can be streamlined** and simpler than the full interconnection study process.

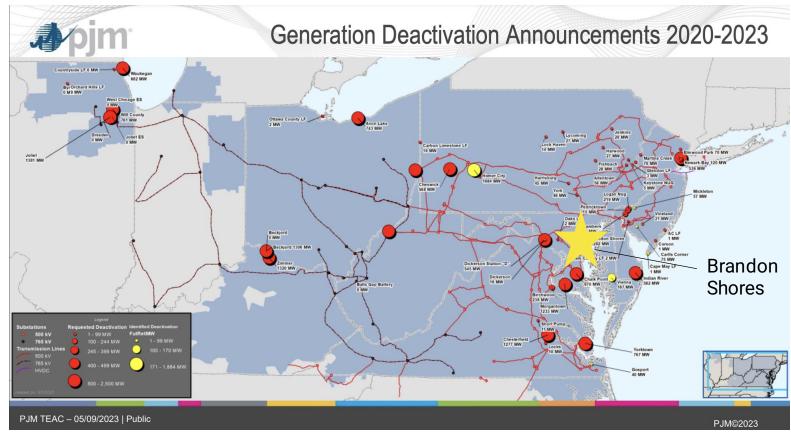


Clean repowering projects can help **maintain reliability** and **support local economic development and policy objectives** by connecting to the grid expeditiously and avoiding the need for costly, time-consuming transmission network upgrades.

RMI - Energy. Transformed.

Clean repowering is a multi-step, multi-jurisdictional process

RMI – Energy. Transformed.


FERC oversight to ensure principles of competition, open access maintained

Why is clean repowering needed?

Ex. 1: Brandon Shores coal plant retirement delayed due to transmission impacts, lack of timely replacement options

- Brandon Shores coal plant in MD announced plans to retire in **2025**
- Deactivation study revealed significant transmission upgrades that would be required, necessitating delayed retirement, RMR contract
- 260 MW of storage at Brandon Shores are waiting in the queue, likely until ~2026
- Root causes of this sub-optimal outcome include lack of proactive transmission planning + lack of efficient process for generator replacement in the region

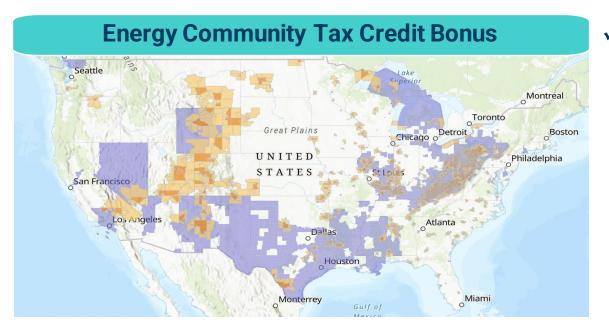
Why is clean repowering needed?

Ex. 2: OPPD's planned retirement of two coal units stymied by the slow interconnection of storage replacement resources

May 2018 – new 100 MW battery request enters SPP queue July 2020 – SPP's new replacement process in effect April 2023 – results published

April 2023 – results published from cluster system impact study: \$12M in upgrade costs

- OPPD had initially planned to retire its North Omaha Station coal plant at the end of 2023.
- Now, partly due to the delayed interconnection of its planned storage replacement project, OPPD plans to keep operating the plant until 2026.
- The storage project in question submitted an interconnection request in 2018 with an **expected in-service date of December 2024**.
- In April 2023, SPP published its System Impact Study for the cluster including the project, allocating nearly **\$12M in upgrade costs** to the storage project.
- OPPD and others have <u>cited</u> the **delay in this project's progress through the interconnection queue** as a primary reason for postponing the retirement of their remaining coal units.

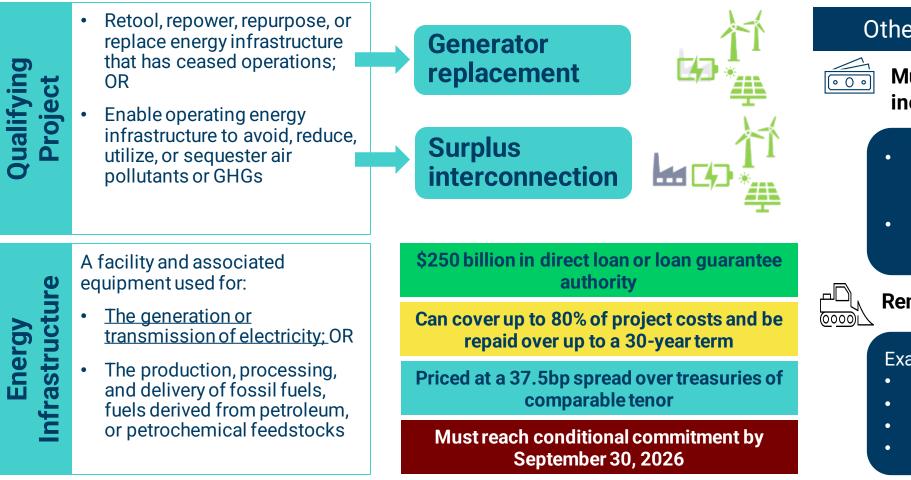

[Note: SPP filed with FERC to create a generator replacement process in 2020, which was approved by FERC and <u>effective on July 1, 2020</u>, but that was after the initiation of the interconnection request for this storage project]

Clean Repowering: How IRA incentives enhance the economics

Pre-IRA, clean energy incentives didn't work for fossilheavy electric utilities and their customers: now they do

Utilities owning 80% of coal could efficiently use tax incentives to build just 4 GW of solar per year – nationally.	Tax transferability and direct pay
Tax normalization rules meant that IOU-owned solar + storage was far more expensive for consumers than PPAs.	No storage ITC normalization
New solar was seen as a threat to utility revenues and a mandatory cost burden on consumers.	PTC for solar, LMI and EJ tax adders
Fossil capital costs that don't go away with clean deployment cost consumers ~\$25B/year.	Energy Infrastructure Reinvestment (EIR)
Permitting, transmission, and interconnection barriers make building out RE very challenging.	EIR for reconductoring

The IRA improves the economics of the clean repowering opportunity: Tax credits


Direct Pay

Tax Credit Transfer

- ✓ Projects qualify for a 10% bonus on the ITC and PTC if they are:
 - Located in or adjoining a coal closure (mine or power plant) community
 - On a site considered brownfield
 - In a metropolitan statistical area (MSA) that has fossil employment above 0.17% and an unemployment rate that is higher than average
- ✓ States, localities, tribes, co-ops, and nonprofits receive a direct payment for the dollar value of the tax credit
- ✓ Entities claiming tax credits can sell them to other buyers for cash, creating a tax credit transfer market

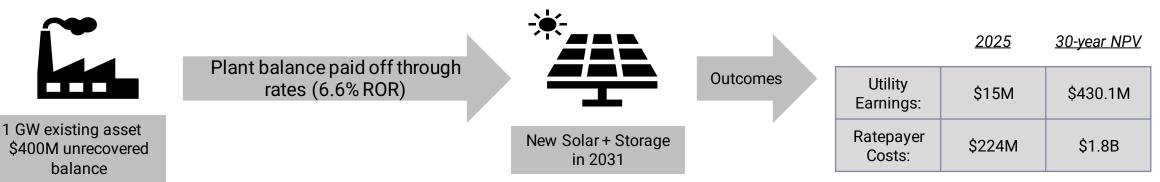
The IRA improves the economics of the clean repowering opportunity: DOE EIR program

Department of Energy (DOE) Loan Program Office's (LPO's) Energy Infrastructure Reinvestment (EIR) Program

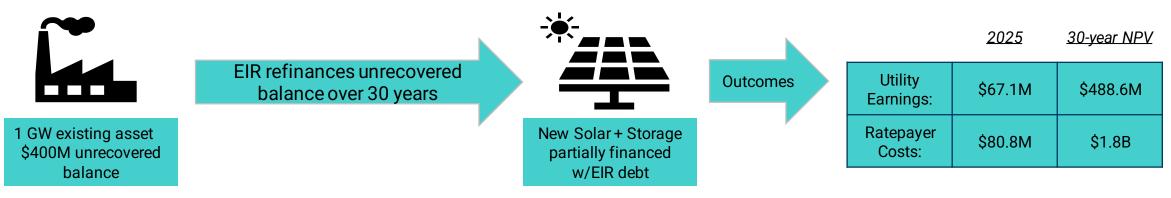
Other Explicit Requirements

Must pass through savings and include community outreach

- Electric utilities must pass on financial benefits to customers/communities
- All entities must develop outreach plan


Remediation explicitly included

Examples:


- Plant decommissioning
- Coal ash ponds
- Mine reclamation
- Water pollution

Electric utilities can utilize EIR low-interest debt to pull forward reinvestment in clean energy

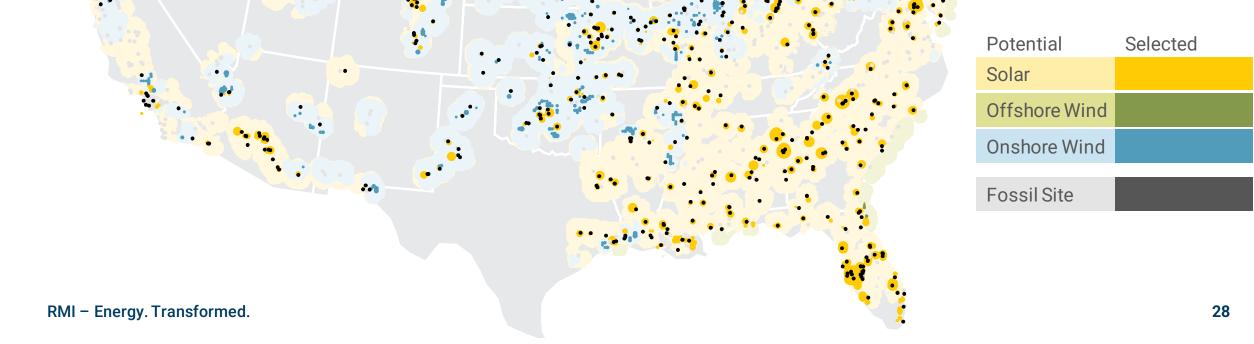
Traditional Financing: Reinvestment in 2031

Accelerated Reinvestment with EIR in 2025

Clean Repowering: The scale of the opportunity

Our analysis identifies attractive clean repowering opportunities across the country by modeling the potential in each balancing authority

The model begins with all major **existing fossil generation** in the balancing authority and identifies the **potential renewable sites** within 45 km. It then creates a set of portfolios in which it **selects increasing amounts of renewables and storage** at the sites where renewables are most attractive relative to the incumbent fossil generator.

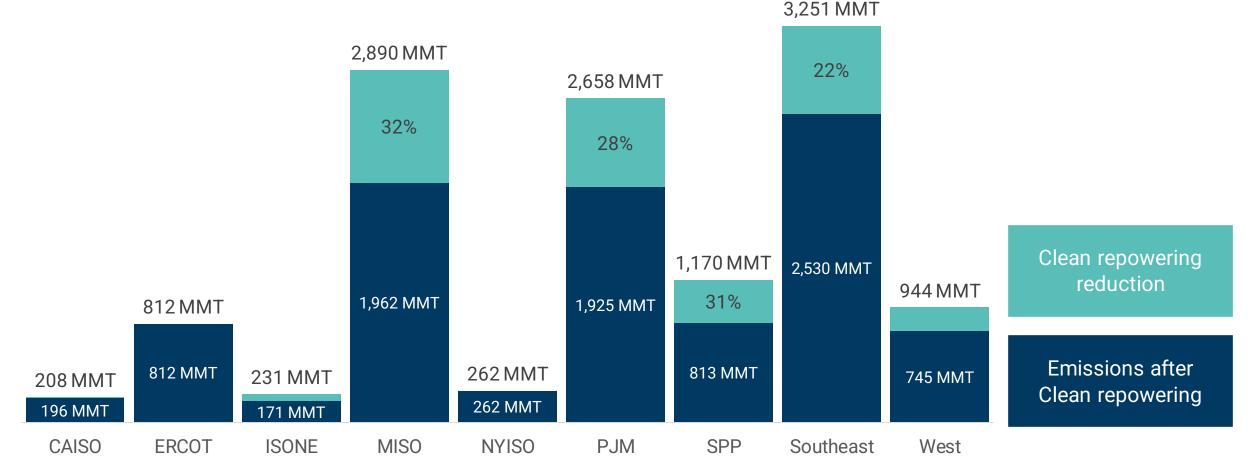

For each portfolio, it simulates hourly operations using 15 years of historical data to estimate production costs and ensure there is no lost load. Finally, it selects the sequence of **portfolios that maximizes utility earnings** without increasing a balancing authority's aggregate levelized cost of generation, **factoring in applicable IRA provisions.**

See <u>Modeling Approach</u> for further details.

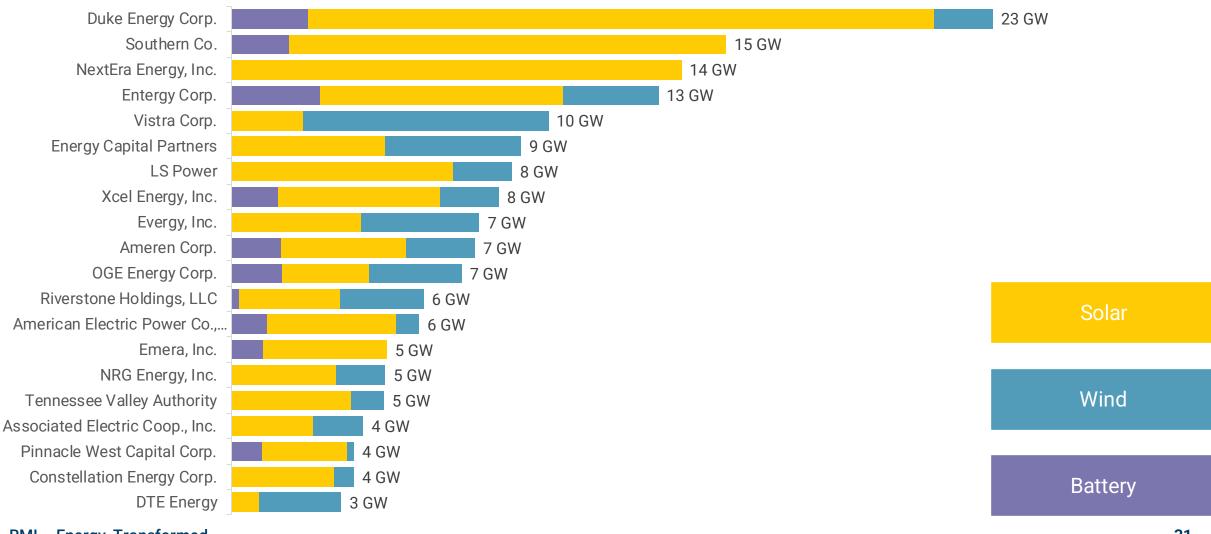
The model selected the most economically attractive sites for renewables as candidates for clean repowering

......

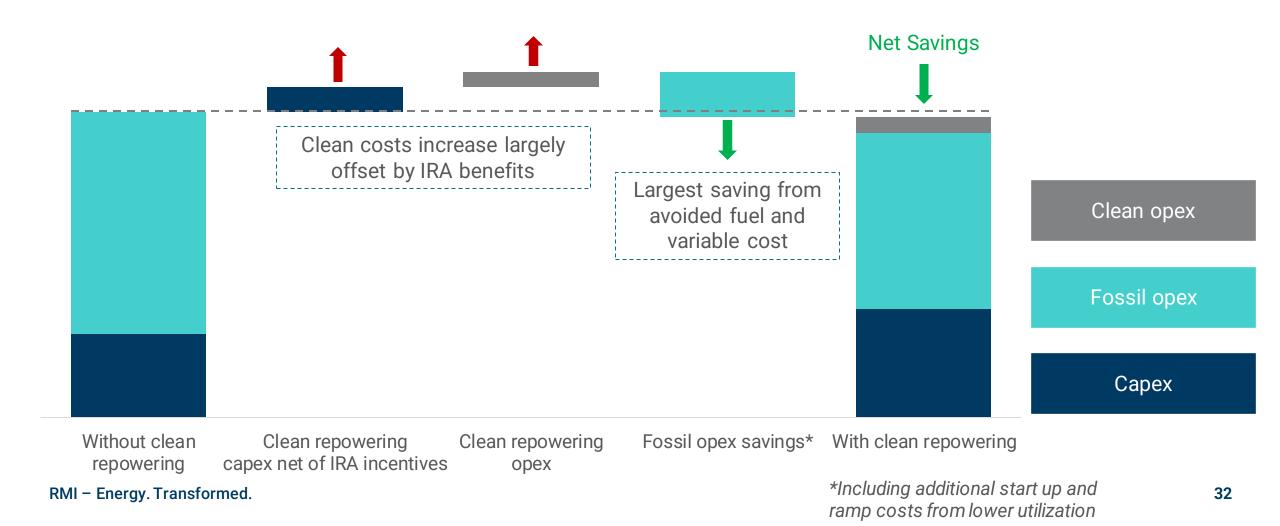
••••


Clean repowering is a 250 GW opportunity* concentrated in MISO, PJM, and the Southeast

RMI - Energy. Transformed.


*on top of the 170 GW of clean generators in advanced development ²⁹

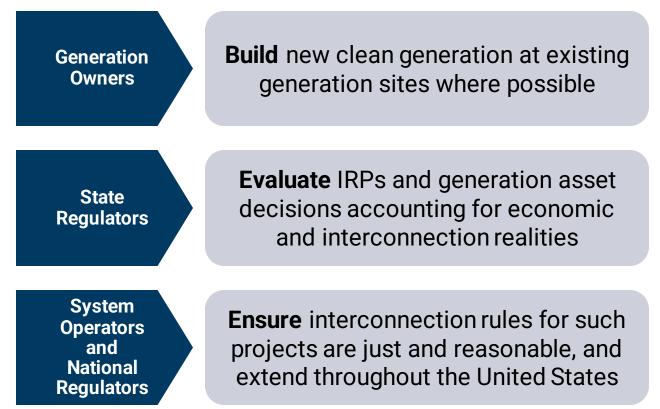
Clean repowering could reduce US electricity emissions by 25% relative to our counterfactual baseline through 2035



RMI - Energy. Transformed.

Over half of the clean repowering opportunity is concentrated with 20 generation owners

Clean repowering creates savings by reducing fossil operating costs and offsetting clean capital costs with IRA incentives


Clean Repowering: Conclusions and calls to action

With the IRA, the time is now to look at uneconomic or underutilized generation and consider clean repowering

Takeaways

- Clean repowering can support **faster interconnection** of clean energy resources and minimize costly transmission network upgrades (for both the developer and the system as a whole).
- IRA incentives make this even more economic for asset owners to pursue – but some, like the EIR, are time-limited.
- Maximizing this opportunity will ensure we make the **best use of the existing grid** and minimize reliability risks associated with retiring generation.

Calls to action

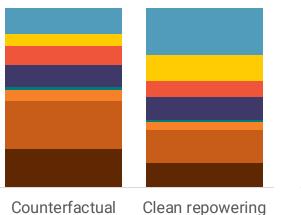
Clean Repowering: Region-specific slides

MISO: Interconnection Fast-Track Rules

Generator Replacement

- Replacement generator must be at same POI + voltage level
- Request must be made at least 1 year before retirement of existing plant, and new generator must come on line within 3 years of the retirement date
- Initial rules prohibited changes to **plant ownership** during the period from a year prior to making request until new generator is on line
 - MISO modified these rules in 2021 to permit **partial transfer** of the existing plant (incumbent must retain at least 25% equity ownership and ability to direct performance of the retiring plant)
 - FERC granted Vistra waiver in 2022 allowing for **affiliate ownership** of replacement generator

Surplus Interconnection Service

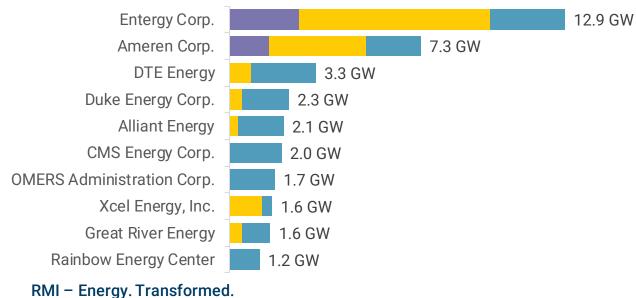

• Process follows FERC Order 845 guidelines (compliance filing approved June 2020)

Relevant Examples

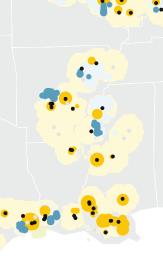
- Vistra plans to replace two recently retired Illinois coal plants (the 948 MW Joppa plant and 560 MW Edwards plant) with 37 MW battery storage projects owned by subsidiaries.
- **AES Indiana** (formerly IP&L) had planned to acquire a 250 MW **solar**/150 MWh **storage** project from NextEra to replace retiring capacity at its coal-fired Petersburg Generating Station; its latest IRP includes plans for 800 MWh of **storage** and **natural gas**.
- **Xcel Energy** has issued RFPs for a combined 710 MW of **solar** to be built near the site of its retiring Sherco Generating Station in Minnesota, with an aim of the new capacity being operational by 2025.

MISO opportunities

Generation in 2035

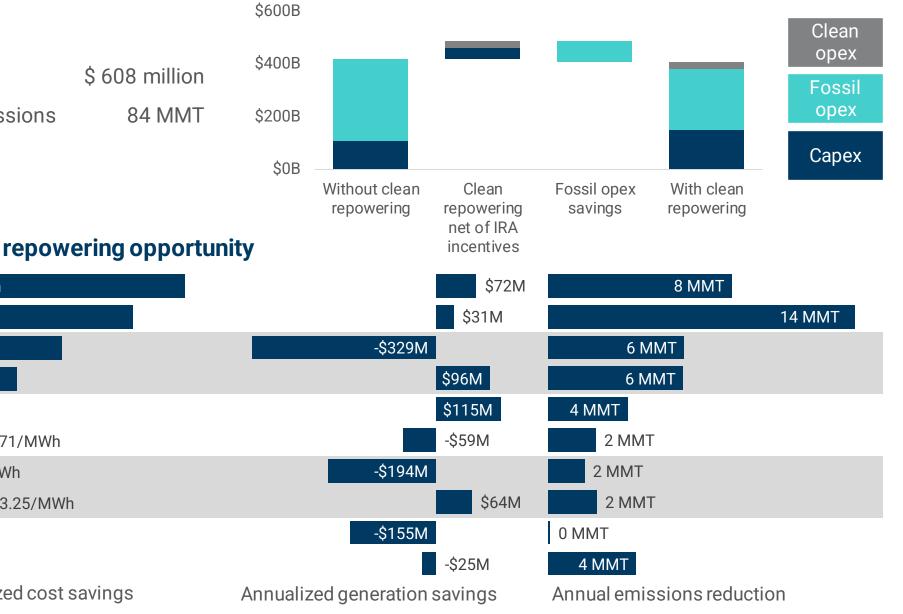

Clean repowering capacity

Counterfactual baseline


Existing fossil... Clean repowering...

Top generation owners by clean repowering opportunity

Potential	Selected
Solar	
Offshore Wind	
Onshore Wind	
Fossil Site	



MISO savings

Total regional annualized savings Total reduction in annual carbon emissions

Cost impact of clean repowering

Top generation owners by clean repowering opportunity

Entergy Corp.	\$11.34/MWh	\$72M	8 MMT
Ameren Corp.	\$9.28/MWh	\$31M	14 MMT
DTE Energy	\$6.44/MWh	-\$329M	6 MMT
Duke Energy Corp.	\$4.61/MWh	\$96M	6 MMT
Alliant Energy	\$3.84/MWh	\$115M	4 MMT
CMS Energy Corp.	\$2.71/MWh	-\$59M	2 MMT
OMERS Administration Corp.	\$1.10/MWh	-\$194M	2 MMT
Xcel Energy, Inc.	\$3.25/MWh	\$64M	2 MMT
Great River Energy	\$0.00/MWh	-\$155M	0 MMT
Rainbow Energy Center	\$0.00/MWh	-\$25M	4 MMT
	Levelized cost savings	Annualized generation savings	Annual emissions reduction
RMI – Energy. Transformed.		eneration owner's levelized cost or annualized generation cost r a change in the composition of its generation.	can increase with clean repowering because of 38

MISO top clean repowering opportunities

-		-			_	Counterfactual				Clean repow					
Plant Name	Owner	Ultimate Parent	Stat	e Region	Technology	Capacity	Utilization	Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind
				-		MW	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	MW	MW	MW
Sabine	Entergy Texas	Entergy	TX	MISO	Gas ST	2,051	0%	6,621	43.5	23%	2,434	315.5	616	1,409	372
Nine Mile Point	Entergy Louisiana	Entergy	LA	MISO	Gas ST	2,142	0%	43,890	110.7	21%	20,374	266.7	81	1,759	
Midland Cogeneration Venture	Midland Cogeneration Venture	OMERSAdministration	M	MISO	GasCC	1,849	32%	2,493,802	412 <u>.</u> 8	50%	874,049	597.1			1,744
Dan EKam	Consumers Energy Co	CMS Energy	M	MISO	Gas ST	1,402	0%	-	338.0	39%	-	453.4			1,363
Little Gypsy	EntergyLouisiana	Entergy	LA	MISO	Gas ST	1,251	0%	2,881	32.4	20%	1,154	165.1	355	985	
RushIsland	Union Electric Co - (MO)	Ameren	MO	MISO	Coal	1,242	67%	7,248,526	370.2	47%	2,352,018	420.2	191	476	549
Waterford 1 & 2	EntergyLouisiana	Entergy	LA	MISO	Gas ST	891	0%	1,826	31.9	25%	810	169.0	316	876	
Audrain GeneratingStation	Union Electric Co- (MO)	Ameren	MO	MISO	GasCT	814	12%	541,090	264.0	29%	56,794	179.5	357	704	100
Coal Creek	Rainbow EnergyCenter	Rainbow EnergyCenter	ND	MISO	Coal	1,210	81%	8,760,449	386.0	84%	4,823,388	406.2			1,156
Sioux	Union Electric Co- (MO)	Ameren	MO	MISO	Coal	1,099	6%	689,965	86.6	29%	129,936	144.5	37	624	444
Cayuga	Duke EnergyIndiana	Duke Energy	IN	MISO	Coal	1.062	25%	2.379.032	332.0	45%	1.007.835	398.5			1.015
Baxter Wilson	EntergyMississippi	Entergy	MS	MISO	Gas ST	1,328	0%	13,632	37.8	10%	7,487	141.9	349	538	.,
Hot SpringGeneratingFacility	Entergy Arkansas	Entergy	AR	MISO	GasCC	715	25%	613,972	282,5	39%	302,701	270,4	160	248	454
Venice	Union Electric Co- (MO)	Ameren	IL	MISO	GasCT	586	13%	397,602	113.4	27%	43,019	114.4	278	575	
Renaissance Power Plant	DTEElectric Company	DTEEnergy	M	MISO	GasCT	782	7%	270,899	72.6	40%	80,180	100.5	2.0	0.0	765
Gerald Andrus	Entergy Mississippi	Entergy	MS	MISO	Gas ST	781	0%	372	27.9	29%	112	103.4			764
Greenwood (MI)	DTEElectric Company	DTEEnergy	M	MISO	Gas ST	815	1%	47,627	78.1	41%	12.576	295.1			761
Monroe (MI)	DTEElectric Company	DTEEnergy	M	MISO	Coal	3,280	43%	12,473,392	1.092.4	34%	,	1,146,1			726
Lewis Creek	Entergy Texas	Entergy	TX	MISO	Gas ST	543	-0%	9,436	25.8	25%	4,321	104.3	192	532	720
Marshalltown GeneratingStation	Interstate Powerand Light Co	Alliant Energy	IA	MISO	GasCC	706	78%	1,775,400	232.9	82%	887,844	192.0	152	502	690
Holland EnergyFacility	Holland Energy	Holland Energy	IL	MISO	GasCC	700	62%	1,472,064	227.2	67%	645,561	227.6			686
Vermillion EnergyFacility	Duke EnergyIndiana	Duke Energy	IN	MISO	GasCT	692	02/8	4,604	34.6	38%	1,149	94.6			673
Goose Creek EnergyCenter	Union Electric Co- (MO)	Ameren	IL	MISO	GasCT	684	3%	146,924	59.7	40%	14,199	85.1			669
Washington Parish EnergyCenter	EntergyLouisiana	Entergy	LA	MISO	GasCT	400	0%	1,094	24.2	40 % 26%	434	95,5	256	395	009
HardingStreet	Indianapolis Power& Light Co	AES	IN	MISO	Gas ST	400 663	0%	18,074	67.7	20%	6,507	103.7	200	644	
RMSchahfer	Northern Indiana PubServCo	NiSource	IN	MISO	Coal	1,943	0%	26,495	12.8	24% 12%	11,582	87.5		044	623
				MISO	GasCT	456		,	87.1	28%	,	84.3	171	348	
Raccoon Creek EnergyCenter	Union Electric Co- (MO)	Ameren		MISO	Gas ST	436 626	7%	204,472 171,436	83.0		16,377 49,015		171	609	98
BigCajun 2	Louisiana Generating		LA				5%			28%	,	111.9		609	500
EmeryStation	Interstate Powerand Light Co	Alliant Energy	IA	MISO	GasCC	603	83%	1,665,748	213.1	84%	804,027	173.1		101	588
Harry L. Oswald	ArkansasElectric Coop	ArkansasElectric Coop.	AR	MISO	GasCC	600	40%	885,434	148.4	44%	380,547	132.9		481	103
WhitingClean Energy	BPAlternative Energy	BPPLC	IN	MISO	Gas CC	577	39%	934,314	152.1	54%	326,171	229.0			543
LakeCatherine	Entergy Arkansas	Entergy	AR	MISO	Gas ST	752	0%	-	0.4	23%	-	51.4			540
Lakefield Junction	Great River Energy	Great River Energy	MN	MISO	GasCT	536	1%	24,971	32.9	45%	4,975	91.8			522
Pinckneyville	Union Electric Co- (MO)	Ameren	IL	MISO	GasCT	380	40%	743,409	183.7	30%	110,360	81.4	148	369	
WheatlandGeneratingFacility	Duke EnergyIndiana	Duke Energy	IN	MISO	GasCT	500	0%	1,724	19.4	29%	279	54.5		387	105
Pleasant Valley (MN)	Great River Energy	Great River Energy	MN	MISO	GasCT	468	1%	33,958	29.3	44%	7,614	81.1			457
Alpine Power Plant	Wolverine Power Supply Coop	Wolverine Power Supply Coop	M	MISO	GasCT	454	4%	103,877	44.2	39%	25,847	71.4		4	440
Big Stone	Otter Tail PowerCo	Otter Tail	SD	MISO	Coal	450	50%	2,021,413	158.5	72%	1,015,173	156.3			440
Coyote	Otter Tail PowerCo	Otter Tail	ND	MISO	Coal	450	54%	2,335,918	156.0	69%	1,085,418	150.0			440
Angus Anson	Northern States PowerCo - Minnesota	Xcel Energy	SD	MISO	GasCT	406	2%	49,367	15.9	45%	13,345	40.6			397
Lawrence County Station	Hoosier EnergyREC	Hoosier EnergyRuralElectric Coop.	IN	MISO	GasCT	402	4%	91,653	30.4	26%	41,943	50.2		391	
Calcasieu	EntergyLouisiana	Entergy	LA	MISO	GasCT	359	0%	172	21.9	28%	50	58.4	34	52	299
Concord	Wisconsin Electric PowerCo	WEC Energy Group	W	MISO	GasCT	382	0%	3,397	22.0	30%	708	49.6		281	93

RMI – Energy. Transformed.

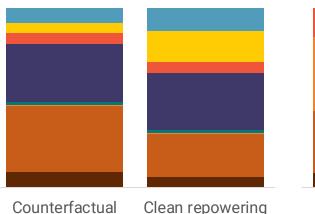
Utilization is essentially the capacity factor of the interconnection; it is calculated as the total generation of all the resources associated with the incumbent fossil generator divided by the capacity of the incumbent fossil generator multiplied by the number of hours in the period.

PJM: Interconnection Fast-Track Rules

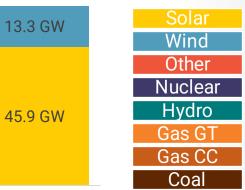
Generator Replacement

- **CIR transfers** are permitted, but no process for separate/fast-track interconnection study of new resource
- Currently **considering the development of such a process** via a stakeholder engagement effort launched in late July in the PJM Interconnection Process Subcommittee
 - Issue Charge approved by PJM Planning Committee on June 6
 - Initiated by Elevate Renewables and East Kentucky Power Cooperative

Surplus Interconnection Service


- Process modeled after FERC Order 845
 - Cannot have a "material impact" on the transmission system
 - Cannot impact any customers in the existing queue and network upgrades they might need
- From 2020 (when process began) to 2022, one surplus request has been received

Relevant Examples


- Elevate Renewables is pursuing the deployment of storage at existing gas generation facilities using the surplus interconnection process and currently has a pipeline of 5 GW across 25 locations.
- Several soon-to-be-retired coal plants in PJM are receiving significant attention for potential CIR transfers and reuse of their interconnections, including Homer City Generating Station in Pennsylvania, which is retiring this summer.
- Offshore wind projects in PJM have paid for CIR transfers from several recently retired coal and nuclear plants and are investigating new options to do so (e.g., **Indian River** coal plant in Delaware, retiring 2026).

PJM opportunities

Generation in 2035

Clean repowering capacity

8.2 GW

Counterfactual (baseline Existing fossil... Clean repowering...

9.3 GW

24.5 GW

20.6 GW

4.8 GW

Top 10 generation owners by clean repowering opportunity

LS Power **Energy Capital Partners** 4.5 GW **Riverstone Holdings, LLC** 3.4 GW Vistra Corp. 2.9 GW Constellation Energy Corp. 2.6 GW The Carlyle Group, Inc. 2.1 GW Chalk Point Power, LLC 1.8 GW J-Power USA Generation L.P. 1.7 GW MC Project Company LLC 1.7 GW Duke Energy Corp. 1.2 GW

PotentialSelectedSolarImage: SolarOffshore WindImage: SolarOnshore WindImage: SolarFossil SiteImage: Solar

•

Clean repowering sites

RMI – Energy. Transformed.

PJM savings

Total regional annualized savings Total reduction in annual carbon emissions

LS Power

Vistra Corp.

Energy Capital Partners

Riverstone Holdings, LLC

Constellation Energy Corp.

J-Power USA Generation L.P.

The Carlyle Group, Inc.

Chalk Point Power, LLC

MC Project Company LLC

Duke Energy Corp.

\$5.65/MWh

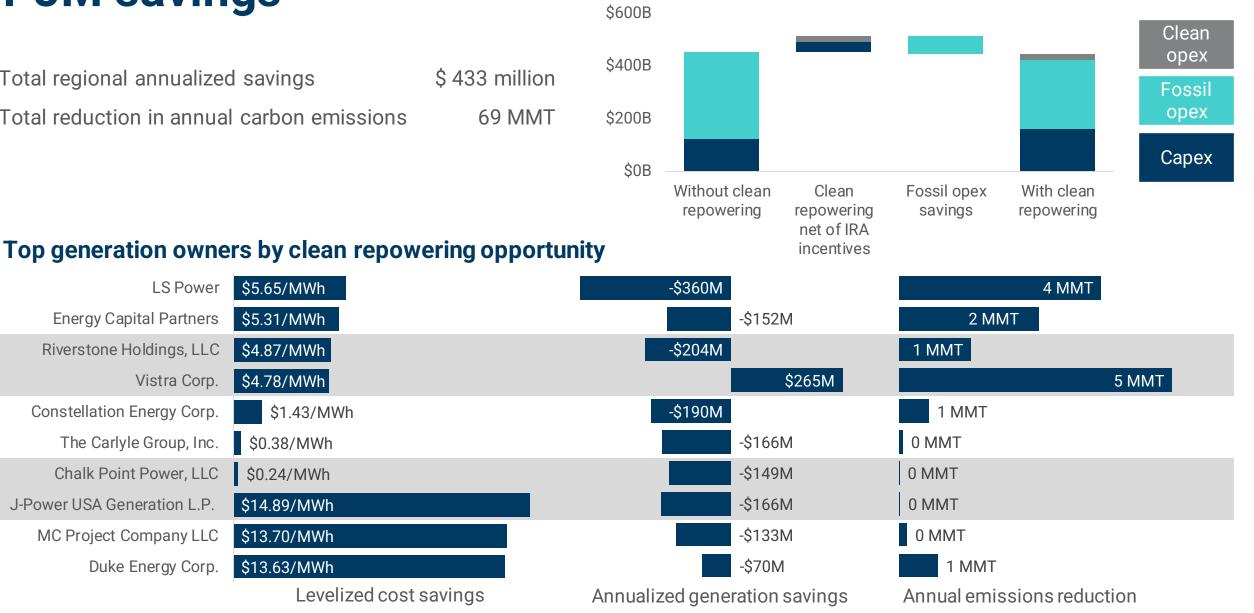
\$5.31/MWh

\$4.87/MWh

\$4.78/MWh

\$0.38/MWh

\$0.24/MWh


\$14.89/MWh

\$13.70/MWh

\$13.63/MWh

\$1.43/MWh

Cost impact of clean repowering

RMI – Energy. Transformed.

42 Negative savings indicate cost increases. A generation owner's levelized cost or annualized generation cost can increase with clean repowering because of an increase in that owner's total generation or a change in the composition of its generation.

PJM top clean repowering opportunities

	_					-	Counterfact			Clean repov	3				
Plant Name	Owner	Ultimate Parent	State	e Region	Technology	Capacity		Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind
						MW	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	MW	MW	MV
Elwood Energy LLC	JPower USADevelopment Co Ltd	J-Power USAGeneration	IL .	PJM	GasCT	1,728	0%	17,260	99.2	31%	5,013	259.0		770	91
TalenEnergyMartins Creek	MC Project Company	MC Project Company	PA	PJM	Gas ST	1,701	2%	226,749	187.3	27%	89,318	317.1		1,676	
Brandon Shores	Brandon Shores	Riverstone Holdings	MD	PJM	Coal	1,370	8%	1,160,259	286.4	29%	598,290	346.0		1,331	
Chalk Point Power	Chalk Point Power	Chalk Point Power	MD	PJM	Gas ST	1,318	0%	5,340	130.8	27%	2,854	235.8		1,299	
CPVFairview EnergyCenter	CPVFairview	CPVFairview	PA	PJM	GasCC	1,197	33%	1,646,791	279.7	55%	632,058	287.3		44	1,12
TalenEnergyMontour	TalenEnergyMontour	Riverstone Holdings	PA	PJM	Coal	1,775	7%	1,145,431	309.6	28%	505,079	376.7		5	1,15
Riverside GeneratingLLC	Riverside GeneratingCo	LSPower	KY	PJM	GasCT	1,150	0%	9,798	66.1	26%	3,711	168.9		1,132	
Bethlehem PowerPlant	Calpine Bethlehem	EnergyCapital Partners	PA	PJM	GasCC	1,153	55%	2,368,760	322.4	54%	1,255,445	331.8		998	12
TenaskaWestmoreland GeneratingStation	DGCWestmoreland	DGCWestmoreland	PA	PJM	GasCC	1,134	41%	1,890,283	287.8	48%	870,654	299.6		594	51
Hay Road	Calpine Mid-Atlantic Generation	EnergyCapital Partners	DE	PJM	GasCC	1,098	37%	1,552,450	283.8	42%	772,251	284.6		1,067	
Aurora	Aurora Generation	LSPower	IL	PJM	GasCT	1,086	1%	72,814	70.3	28%	20,502	156.2		746	31
Moxie Freedom Generation Plant	Moxie Freedom	Moxie Freedom	PA	PJM	GasCC	1,058	95%	3,046,187	453.0	85%	1,537,981	371.4			97
Hummel Station LLC	HummelStation	LSPower	PA	PJM	GasCC	1,194	90%	3,433,844	511.2	78%	1,826,075	429.7			95
RollingHills Generating	RollingHills Generating	ArcLightCapital Partners	OH	PJM	GasCT	978	1%	72,125	63.1	23%	24,940	133.0		952	
Clean EnergyFuture-Lordstown, LLC	Clean EnergyFuture-Lordstown	Clean EnergyFuture	OH	PJM	GasCC	962	61%	2,050,008	350.2	55%	1,113,286	319.6		934	
JKSmith	East Kentucky Power Coop	East Kentucky Power Coop.	KY	PJM	GasCT	1,055	4%	288,497	113.6	27%	366,810	176.7		896	
KeysEnergyCenter	PSEGKeysEnergy Center	Public Service Enterprise Group	MD	PJM	GasCC	831	45%	1,123,934	267.2	46%	564,438	236,5		779	
Troy Energy LLC	LSPower Development	LSPower	OH	PJM	GasCT	796	2%	61,871	52.6	23%	19,475	108,7		773	
EddystoneGeneratingStation	Exelon Power	Constellation Energy	PA	PJM	Gas ST	782	0%	9,703	79.9	27%	2,809	146.8		771	
Ironwood LLC	Helix Ironwood	LSPower	PA	PJM	GasCC	778	76%	2,024,551	259.8	68%	1,056,927	252.7		424	33
CPVSt Charles EnergyCenter	CPVMaryland	CPVMaryland	MD	PJM	GasCC	775	25%	641,297	180.4	36%	289,165	178.2		754	00.
BergenGeneratingStation	BergenGeneratingStation	BergenGeneratingStation	NJ	PJM	GasCC	1,401	42%	2,049,240	371.7	38%	1,188,517	334.2		752	
Essential Power Rock Springs LLC	Essential Power Rock Springs	TheCarlyle Group	MD	PJM	GasCT	773	1%	29,402	47.5	25%	9,612	102.9		751	
Hamilton Patriot Generation Plant	Hamilton Patriot	Hamilton Patriot	PA	PJM	GasCC	870	95%	2,529,322	366.3	83%	1,385,143	319.6		701	75
Doswell EnergyCenter	Doswell Ltd Partnership	LSPower	VA	PJM	GasCC	752	13%	383,735	122.4	30%	161,204	147.7		731	70
University ParkNorth	LSPUniversity Park	LSPower	1	PJM	GasCT	726	1%	29.044	45.1	23%	7.513	97.8		700	
EdgeMoor	Calpine Mid-Atlantic Generation	EnergyCapital Partners	DE	PJM	Gas ST	698	1%	23,044	73.1	25%	7,513	120.7		680	
Lawrenceburg Power, LLC	Lightstone Generation	Lightstone Generation	IN	PJM	GasCC	1,232	65%	2,522,653	457,9	20%	1,776,978	407,5		676	
Madison	Duke EnergyIndiana	Duke Energy	OH	PJM	GasCC	692	0%	4,237	457.9 64.1	24%	2,002	407.5		678	
	0,	0,	- · ·								,				
Lincoln GeneratingFacility	Earthrise Energy, PBC	Earthrise Energy, PBC	IL DA	PJM	GasCT	692	0%	1,185	38.7	30%	421	88.5		341	33
Armstrong	Armstrong Power	LSPower	PA	PJM	GasCT	688	5%	165,255	55.1	24%	60,907	100.4		668	
Tait Electric GeneratingStation	Kimura Power	RocklandCapital	OH	PJM	GasCT	670	0%	20,011	39.7	26%	7,341	101.3		660	
HangingRock EnergyFacility	DynegyHanging Rock EnergyFacility	Vistra	OH	PJM	GasCC	1,430	74%	3,508,408	581.1	56%	2,161,786	480.0		616	
Shawville	Shawville Power	Shawville Power	PA	PJM	Gas ST	626	2%	58,241	78.9	42%	18,845	127.1			61
Nelson EnergyCenter	Invenergy Services	Invenergy	IL	PJM	GasCC	628	46%	811,535	192.9	58%	345,910	195.4			60
TenaskaVirginia GeneratingStation	Tenaska Virginia I	Tenaska Energy	VA	PJM	GasCC	1,011	37%	1,235,640	275.8	35%	653,563	239.8		603	
KendallCountyGenerationFacility	Dynegy Kendall Energy	Vistra	IL	PJM	GasCC	1,256	28%	1,228,380	323.3	30%	587,023	280.2		128	47
Cordova Energy	Cordova EnergyCo	Berkshire Hathaway	IL	PJM	GasCC	611	49%	937,832	218.8	56%	336,999	187.2			59
PSEGKearnyGenerating Station	KearnyGeneratingStation	KearnyGeneratingStation	NJ	PJM	GasCT	916	2%	77,300	48.3	16%	29,841	88.0		584	
Robert PMone Plant	Buckeye Power	Buckeye Power	OH	PJM	GasCT	594	0%	12,103	33.0	37%	2,711	99.4			58
Zion EnergyCenter	Zion Energy	EnergyCapital Partners	IL	PJM	GasCT	597	0%	3,304	33.9	23%	1,274	79.7		580	
HomerCity GeneratingStation	Homer City Holdings	Homer City Holdings	PA	PJM	Coal	2,012	12%	2,148,392	395.1	13%	1,138,691	393.0		568	
Woodsdale	Duke EnergyKentucky	Duke Energy	OH	PJM	GasCT	572	0%	471	40.0	26%	172	76.4		562	

RMI – Energy. Transformed.

Utilization is essentially the capacity factor of the interconnection, it is calculated as the total generation of all the resources associated with the incumbent fossil generator divided by the capacity of the incumbent fossil generator multiplied by the number of hours in the period.

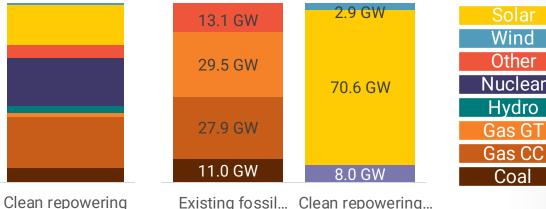
Southeast: Interconnection Fast-Track Rules

Generator Replacement

- Some utilities have processes in place, modeled after MISO's
 - **Duke** Energy Progress and Carolinas, filed 2022
 - Dominion South Carolina, filed 2020

Surplus Interconnection Service

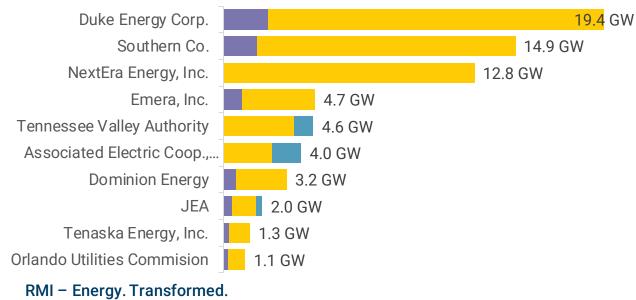
- All utilities have processes closely modeled on FERC Order 845
- Specifics on study timelines and deposits vary by utility


Relevant Examples

- Many utilities are planning to retire most of their coal capacity in the coming decade, but few utilities have confirmed clean repowering projects. **Most plan to replace the coal with gas.**
- LG&E/KU plan to add a battery storage facility at the retiring E.W. Brown Coal Generating Station along with a new gas plant and off-site solar.
- Tennessee Valley Authority is considering adding solar/storage to replace coal, but additions would be off-site.

Southeast opportunities

Generation in 2035



Counterfactual baseline

Existing fossil... Clean repowering...

Top 10 generation owners by clean repowering opportunity

.... Potential Selected Solar **Offshore Wind Onshore Wind** 45 Fossil Site

Clean repowering sites

Southeast savings

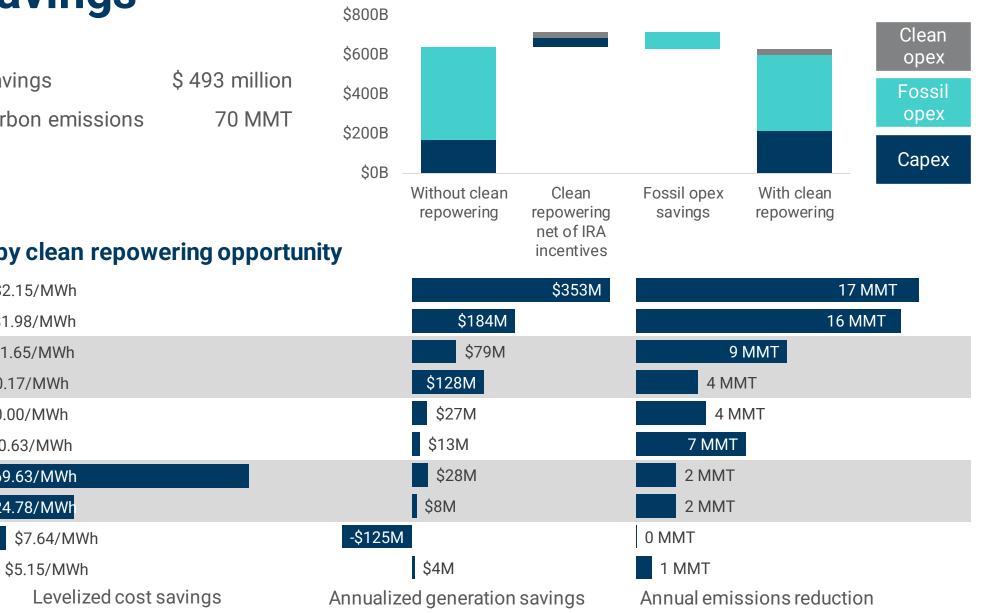
Total regional annualized savings Total reduction in annual carbon emissions

Duke Energy Corp.

NextEra Energy, Inc.

Dominion Energy

Tenaska Energy, Inc.


Tennessee Valley Authority

Associated Electric Coop., Inc.

Emera. Inc.

JEA

Cost impact of clean repowering

Top generation owners by clean repowering opportunity

\$2.15/MWh

\$1.65/MWh

\$0.17/MWh

\$0.00/MWh

-\$0.63/MWh

\$69.63/MWh

\$24.78/MWh

Southern Co. \$1.98/MWh

RMI –	Energy.	Transformed.
-------	---------	--------------

Orlando Utilities Commision

Negative savings indicate cost increases. A generation owner's levelized cost or annualized generation cost can increase with clean repowering because of 46 an increase in that owner's total generation or a change in the composition of its generation.

Southeast top clean repowering opportunities

	-		-				Counterfact	ual		Clean repov	verina				
Plant Name	Owner	Ultimate Parent	St	ate Region	Technology	-		Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind
				•		MŴ	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	мŴ	MW	MW
Bowen	Georgia Power Co	Southern Co.	G/	A Southeas	Coal	3,499	11%	3,273,772	1,191.0	21%	1,550,307	1,120.8	755	2,889	
Crystal River	Duke EnergyFlorida	Duke Energy	FL	Southeas	GasCC	1,971	28%	2,193,640	609.1	35%	865,984	587.1	494	1,933	
Wansley	Georgia Power Co	Southern Co.	GA	A Southeas	Coal	1,904	5%	842,346	363.0	25%	388,694	441.7	476	1,863	
HLCulbreath Bayside Power Station	TampaElectric Co	Emera	FL	Southeas	GasCC	2,014	43%	2,953,394	677.8	43%	1,523,520	645.0	461	1,804	
Martin	Florida Power & Light Co	NextEra Energy	FL.	Southeas	GasCC	2,449	34%	2,724,536	826.7	46%	1,848,228	856.3		2,212	
Manatee	Florida Power & Light Co	NextEra Energy	FL	Southeast	GasST	1,727	0%	26	122.1	28%	206	231.4		1,706	
Lincoln Combustion	Duke EnergyCarolinas	Duke Energy	NC	C Southeas	GasCT	2,290	0%	3,088	77.7	17%	105	167.4		1,704	
PLBartow	Duke EnergyFlorida	Duke Energy	FL	Southeas	GasCC	1,254	61%	2,761,038	618.9	54%	1,378,592	551.4	313	1,224	
Fort Myers	Florida Power & Light Co	NextEra Energy	FL	Southeas	GasCC	1,722	33%	1.881.913	606.1	44%	1,262,353	618.9		1,419	
Anclote	Duke Energy Florida	Duke Energy	FL	Southeast	GasST	1,112	1%	73,891	106.0	26%	11,213	226.7	278	1,098	
TenaskaGeorgiaGeneration Facility	Tenaska Georgia I	Tenaska Energy	G/	A Southeast	GasCT	1,099	0%	24,829	61.9	24%	11,198	186.2	276	1,078	
Lauderdale	Florida Power & Light Co	NextEra Energy	FL	Southeas	GasCT	1,968	0%	464	138,7	17%	7,613	217.3		1,199	
Allen	Tennessee Valley Authority	TennesseeValley Authority	TN			1,171	34%	1,188,246	274.2	51%	730,605	347,7		116	1.008
Gulf Clean EnergyCenter	Florida Power & Light Co	NextEra Energy	FL	Southeast		1,229	0%	6,797	115.4	26%	2,469	186.3		1,119	.,
Hines EnergyComplex	Duke EnergyFlorida	Duke Energy	FL	Southeas		2,266	78%	6,079,690	1,246.5	53%	3,396,724	946.6	226	880	
EC Gaston	Alabama Power Co	Southern Co.	AL			1.061	7%	370,548	275.9	32%	122,269	349,5		1.047	
Chouteau	Associated Electric Coop	Associated Electric Coop.	Oł			1,070	74%	2,640,392	398,9	70%	1,193,508	325.0		93	946
Manatee	Florida Power& Light Co	NextEra Energy	FL			1,225	51%	2,028,501	494.7	57%	1,396,662	490.2		1.015	010
Yates	Georgia Power Co	Southern Co.	GA			807	6%	261,212	96.4	27%	92,073	146.0	202	797	
McIntosh	Georgia Power Co	Southern Co.	G/			810	0%	4,659	45.5	26%	274	105.7	202	797	
Washington County PowerLLC	Georgia Gulf Generating	GeorgiaGulf Generating	G/			796	1%	43.906	49.3	26%	12,074	128,4	200	784	
Oleander PowerProject LP	Oleander Holdings	NextEra Energy	FL			994	0%	427	55.1	28%	25,515	152.8	200	982	
WayneCounty	Duke EnergyProgress - (NC)	Duke Energy	NC			980	0% 1%	37.465	59.9	20%	73,506	108.0		902 943	
Broad River EnergyCenter		Broad River Energy	SC			985	4%	207,847	93.1	22 /0	263,592	142.8		943	
	Broad River Energy	Duke Energy	N			903 978	4 /0 3%	175,174	81.6	23 % 22%	128,357	142.0		936	
RockinghamCounty CTStation	Duke EnergyCarolinas Southern Power Co	Southern Co.	G/			978 919	3% 0%	175,174	50.8	22%	39	114.3		938 908	
Dahlberg			FL	Southeas			0% 11%	2,412,314	334.8	20% 13%		374.5	105		
Crystal River	Duke EnergyFlorida	Duke Energy	FL FL			2,443 728	3%		334.8 60.5		1,269,321		185	720 716	
Vandolah Power Station	Northern Star Generation ServicesCo	Northern Star Generation	FL FL					114,610		26%	20,234 329	143.8	184		
Intercession City	Duke EnergyFlorida	Duke Energy				709	0%	2,914	33.4	26%		120.7	179	700	
New Madrid	AssociatedElectric Coop	Associated Electric Coop.	M			1,300	35%	3,768,958	373.4	31%	1,600,382	379.9	107	869	
Columbia EnergyCenter (SC)	Dominion EnergySouthCarolina	Dominion Energy	SC			669	73%	1,681,824	292.8	76%	1,112,660	306.0	167	659	
Fort Myers	Florida Power & Light Co	NextEra Energy	FL .	Southeas		835	0%	21	60.7	28%	1,207	115.4	100	825	
Polk	TampaElectric Co	Emera	FL.			1,166	41%	1,550,036	444.7	35%	811,675	384.3	168	655	
WSLee	Duke EnergyCarolinas	Duke Energy	SC			847	80%	2,204,928	431.8	72%	1,439,092	379 <u>.</u> 1	105	809	
Williams	South Carolina GenertgCo	Dominion Energy	SC			660	9%	479,906	207.2	30%	332,981	227,3	165	642	
Osprey EnergyCenter Power Plant	Duke EnergyFlorida	Duke Energy	FL			644	8%	177,410	123.9	30%	92,185	157.2	161	633	
Mill Creek (SC)	Duke EnergyCarolinas	Duke Energy	SC			799	0%	8,107	51.5	22%	4,462	90.0		775	
Calhoun EnergyCenter	Harbert PowerFundV	Harbert PowerFundV	AL			748	2%	62,605	51.9	29%	16,927	115.1		738	
Northside GeneratingStation	JEA	JEA	FL.	Southeast		564	22%	638,838	150.8	31%	148,030	160.4	184	553	
TenaskaLindsayHill GeneratingStation	Tenaska Alabama Partners	Tenaska Alabama Partners	AL			939	30%	915,892	209.8	40%	625,583	225.7		733	
GreeneCounty	Alabama Power Co	Southern Co.	AL			720	0%	10,442	37.0	29%	1,969	95.7		710	
Cleveland Cnty Generating Facility	Southern PowerCo	Southern Co.	NC			736	5%	186,103	71.6	26%	236,899	106.9		703	
LVSutton Combined Cycle	Duke EnergyProgress-(NC)	Duke Energy	NC	C Southeas	GasCC	730	38%	919,662	267.0	35%	395,154	205.3		697	

RMI – Energy. Transformed.

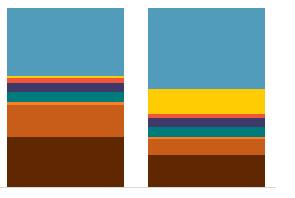
Utilization is essentially the capacity factor of the interconnection, it is calculated as the total generation of all the resources associated with the incumbent fossil generator divided by the capacity of the incumbent fossil generator multiplied by the number of hours in the period.

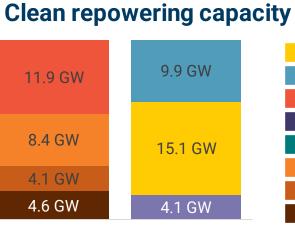
SPP: Interconnection Fast-Track Rules

Generator Replacement

- Replacement process modeled after MISO's
- Differences:
 - The SPP Tariff does not contain a generator retirement process
 - SPP's process includes provisions for transferring designation of a Network Resource facility from an existing generator to a replacement (<u>FERC ER20-1536-000</u>)
 - SPP includes "fast track" process option that costs \$1k but the generator must be <4 MW (<u>SPP Tariff Attachment V</u> § 14)

Surplus Interconnection Service

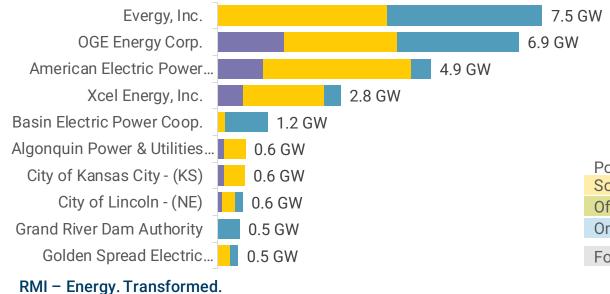

 Process modeled after FERC Order 845 (compliance filing approved January 2020)


Relevant Examples

- Omaha Public Power District is struggling to convert a retiring coal unit to battery storage due to interconnection delays and high network upgrade costs faced by the storage facilities.
- Great River Energy's intended replacement of the Coal Creek Station with renewables was thwarted by local opposition and pushback from North Dakota policymakers.

SPP opportunities

Generation in 2035



Counterfactual Clean repowering baseline

Existing fossil... Clean repowering...

Top 10 generation owners by clean repowering opportunity

Solar

Wind

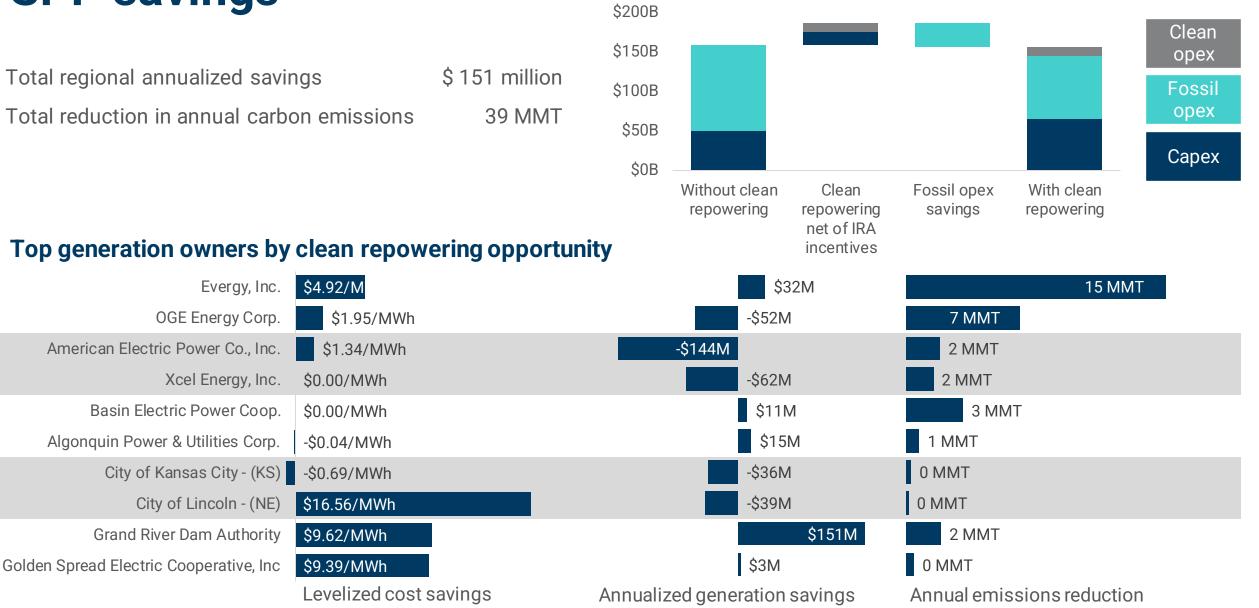
Other Nuclear

Hydro

Gas GT

Gas CC

Coal


Clean repowering sites

•

•••

SPP savings

Total regional annualized savings Total reduction in annual carbon emissions Cost impact of clean repowering

Top generation owners by clean repowering opportunity

RMI – Energy. Transformed.

50 Negative savings indicate cost increases. A generation owner's levelized cost or annualized generation cost can increase with clean repowering because of an increase in that owner's total generation or a change in the composition of its generation.

SPP top clean repowering opportunities

						_	Counterfact	ual		Clean repov	vering				
Plant Name	Owner	Ultimate Parent	State	e Region	Technology	Capacity		Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind
						MW	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	MW	MW	MW
Seminole	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	Gas ST	1,701	8%	715,731	236.5	32%	240,972	381.5	380	655	992
Jeffrey EnergyCenter	EvergyKansasCentral	Evergy	KS	SPP	Coal	2,160	43%	9,169,810	744.1	40%	3,044,019	635.9			1,495
La Cygne	Evergy Kansas South	Evergy	KS	SPP	Coal	1,599	58%	8,351,114	527 <u>.</u> 5	60%	5,088,418	536.8		1,039	453
Redbud Power Plant	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	Gas CC	1,434	85%	4,140,357	673.1	65%	1,483,735	485.8	15	26	1,370
Horseshoe Lake	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	Gas ST	826	4%	178,524	76.5	24%	43,502	180.2	474	809	
Wilkes	Southwestern Electric PowerCo	American Electric PowerCo.	TX	SPP	Gas ST	882	0%	9,608	47.6	28%	598	103.2	269	863	
Muskogee	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	Gas ST	1,317	9%	605,451	206.3	29%	153,551	262.1			1,105
JLamar Stall Unit	Southwestern Electric PowerCo	American Electric PowerCo.	LA	SPP	GasCC	624	28%	580,415	123 <u>.</u> 4	41%	226,290	129.5	190	616	
Mustang	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	GasCT	462	18%	390,651	106.8	31%	138,074	145.4	266	455	
McClain EnergyFacility	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	GasCC	551	89%	1,574,242	268.5	55%	665,671	198.3	263	447	
Emporia EnergyCenter	EvergyKansasCentral	Evergy	KS	SPP	GasCT	730	3%	115,576	41.4	32%	18,176	67.9		209	488
Jones	Southwestern Public Service Co	Xcel Energy	TX	SPP	Gas ST	495	1%	14,905	17.4	32%	4,826	43.1	150	487	
Leland Olds	Basin Electric PowerCoop	Basin Electric PowerCoop,	ND	SPP	Coal	656	35%	2,289,198	177,9	60%		190,9			623
Northeastern	Public Service Co of Oklahoma	American Electric PowerCo.	OK	SPP	Gas ST	473	0%	12.314	28.6	26%	772	61.2	144	460	
Antelope Valley	Basin Electric PowerCoop	Basin Electric PowerCoop.	ND	SPP	Coal	954	68%	6,184,216	296.2	62%	4,074,173	307.3		175	357
Lawrence EnergyCenter	EvergyKansasCentral	Evergy	KS	SPP	Coal	566	28%	1,536,744	158,1	26%	315,303	123,8		498	
Empire EnergyCenter	EmpireDistrict Electric Co	AlgonguinPower& Utilities	MO	SPP	GasCT	379	3%	80,203	35.6	29%	32,847	52,5	114	371	
Nichols	Southwestern Public Service Co	Xcel Energy	TX	SPP	Gas ST	475	1%	24,777	13.0	44%	15,006	51.5	24	76	380
Northeast (MO)	EvergyMetro	Evergy	MO	SPP	Other Fossil	490	0%	6,960	14.2	23%	1,729	39.3	24	474	000
Jones	Southwestern Public Service Co	Xcel Energy	TX	SPP	GasCT	365	14%	244,296	51.2	38%	106,498	59.8	110	357	
MustangStation Unit 4	Golden Spread Electric Cooperative	Golden Spread Electric Cooperative	TX	SPP	GasCT	472	14%	259,280	42.7	37%	114,013	66.1	110	253	205
Knox Lee	Southwestern Electric PowerCo	American Electric PowerCo.	TX	SPP	Gas ST	472 501	1%	20,250	42.7 42.6	21%	13,222	61.0	107	255 345	200
Harry D Mattison Gas Plant	Southwestern Electric PowerCo	American Electric PowerCo.		SPP	GasCT	349	0%	20,250		21%	13,222	48.1	107	343 343	
,			AR	SPP					19.5						
Tulsa	Public Service Co of Oklahoma	American Electric PowerCo.	OK		Gas ST	435	0%	2,272	32.5	20%	163	56.8	104	331	
Plant X	Southwestern Public Service Co	Xcel Energy	TX	SPP	Gas ST	434	1%	24,652	13.9	27%	10,490	33.8	103	331	
Southwestern	Public Service Co of Oklahoma	American Electric PowerCo.	OK	SPP	Gas ST	483	0%	13,158	20.9	34%	1,070	50.9	26	82	300
West Gardner	EvergyMetro	Evergy	KS	SPP	GasCT	408	1%	36,625	16.7	28%	64,920	36.5		295	96
Gordon EvansEnergyCenter	Evergy Kansas South	Evergy	KS	SPP	GasCT	375	2%	40,406	25.9	38%	6,063	39.2			355
Cunningham	Southwestern Public Service Co	Xcel Energy	NM	SPP	Gas ST	265	2%	27,025	7.8	35%	12,792	22.2	81	261	
South Harper	EvergyMissouri West	Evergy	MO	SPP	GasCT	351	1%	26,694	24.9	27%	44,468	40.7		225	110
Cunningham	Southwestern Public Service Co	Xcel Energy	NM	SPP	GasCT	254	9%	124,898	34.7	38%	54,133	38.6	78	250	
Spring Creek EnergyCenter	EvergyKansasCentral	Evergy	OK	SPP	GasCT	338	2%	37,880	14.3	39%	49,635	26.2			317
Quindaro	City of KansasCity - (KS)	City of KansasCity - (KS)	KS	SPP	Gas ST	239	0%	-	28.2	28%	-	53.1	73	237	
Mooreland	Western Farmers Elec Coop	Western Farmers Elec Coop	OK	SPP	Gas ST	305	0%	1,647	17.0	44%	172	48.4	14	44	250
Hawthorn	EvergyMetro	Evergy	MO	SPP	GasCC	313	34%	424,472	78.0	31%	105,355	49.2		301	
Lieberman	Southwestern Electric PowerCo	American Electric PowerCo.	LA	SPP	Gas ST	278	0%	568	23.6	24%	15	36.8	70	224	
Rokeby	Lincoln Electric System	City of Lincoln - (NE)	NE	SPP	GasCT	263	1%	24,514	32.5	41%	7,030	50.7	22	71	187
Greenwood (MO)	EvergyMissouri West	Evergy	MO	SPP	GasCT	259	0%	4,980	13.3	23%	1,511	26.4		251	
ThomasFitzhugh	ArkansasElectric Coop	ArkansasElectric Coop.	AR	SPP	GasCC	185	7%	55,216	27.9	30%	14,500	37.7	56	182	
Hutchinson EnergyCenter	EvergyKansasCentral	Evergy	KS	SPP	GasCT	213	0%	5,367	11.1	25%	-	17.1		206	
Frontier	OklahomaGas&Electric Co	OGEEnergy	OK	SPP	GasCC	131	54%	256,009	57.4	40%	81,701	44.7	75	128	
Terry Bundy Generating Station	Lincoln Electric System	City of Lincoln - (NE)	NE	SPP	GasCC	149	5%	28,951	23.9	29%	5,383	33.7	45	146	
Horseshoe Lake	OklahomaGas& Electric Co	OGEEnergy	OK	SPP	GasCT	148	7%	47.829	17.9	20%	15.549	28,8	70	118	

RMI – Energy. Transformed.

Utilization is essentially the capacity factor of the interconnection, it is calculated as the total generation of all the resources associated with the incumbent fossil generator divided by the capacity of the incumbent fossil generator multiplied by the number of hours in the period.

CAISO: Interconnection Fast-Track Rules

Generator Replacement

- Requesting replacement (CAISO BPM)
 - Generator must be currently interconnected to CAISO and have delivered energy within the past 3 years
 - Request must be generated by the **owner** of said generator
 - Request must utilize the same "fuel source" and POI
 - All *combustible* fuel sources considered the same for repowering purposes
 - Energy storage will be considered the same fuel source
 - Requestor must demonstrate that there will not be any adverse impact to grid
 - Even if there are no adverse impacts, a facilities study may still be required
- Cost and time (<u>CAISO Tariff § 25</u>)
 - \$50k study deposit, approximately 115 business days

Relevant Examples

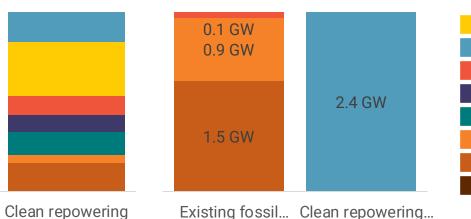
- Historically, the generator replacement process has primarily been utilized to convert steam turbines to gas.
- Vistra has replaced its Moss Landing Power Plant gas turbines with hundreds of MWs of batteries.

Surplus Interconnection Service

 Process follows FERC Order 845 guidelines (compliance filing approved Feb 2020)

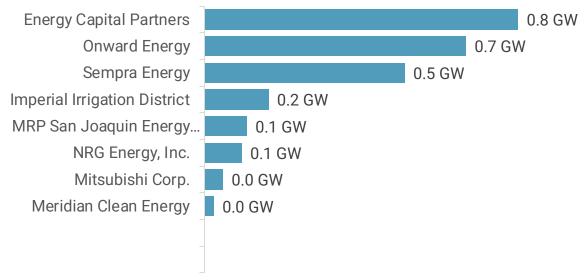
CAISO opportunities

Generation in 2035

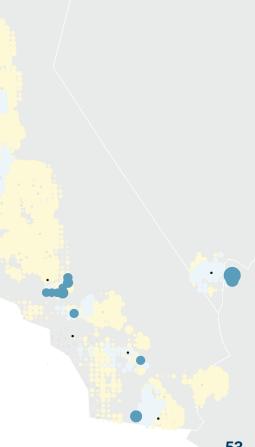

Solar

Wind

Other Nuclear


Hydro

Gas GT Gas CC Coal


Counterfactual Cle baseline

Top 10 generation owners by clean repowering opportunity

Potential	Selected
Solar	
Offshore Wind	
Onshore Wind	
Fossil Site	

Clean repowering sites

CAISO savings

Total regional annualized savings

Energy Capital Partners

Imperial Irrigation District

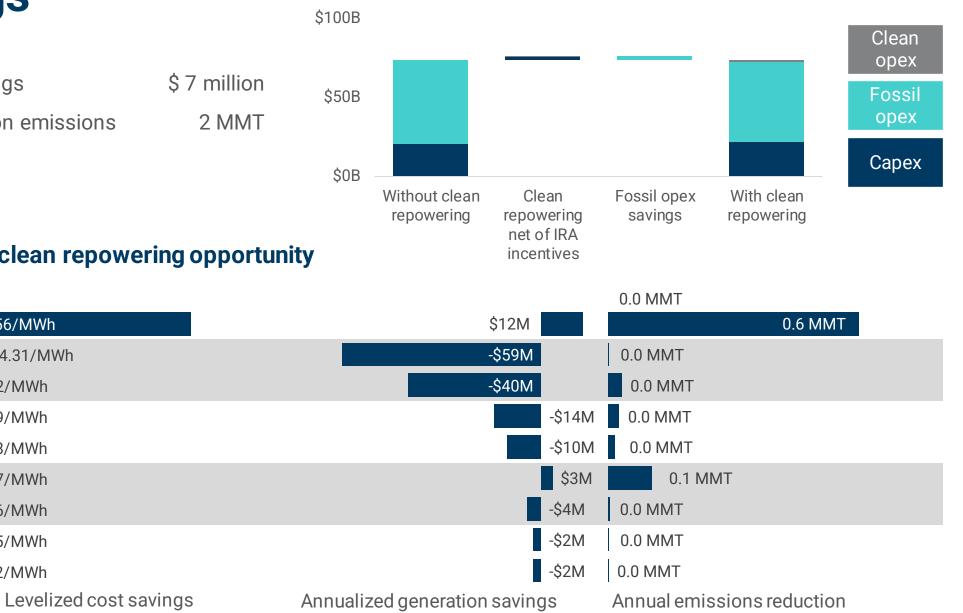
MRP San Joaquin Energy LLC.

Onward Energy

Sempra Energy

NRG Energy, Inc.

Mitsubishi Corp.


Voltage Finance LLC

Meridian Clean Energy

Total reduction in annual carbon emissions

\$7 million

Cost impact of clean repowering

Top generation owners by clean repowering opportunity

\$38.56/MWh

\$0.12/MWh

\$0.09/MWh

\$0.08/MWh

\$0.07/MWh

\$0.06/MWh

\$0.05/MWh

\$0.02/MWh

\$4.31/MWh

- Energy. Transformed. RMI

54 Negative savings indicate cost increases. A generation owner's levelized cost or annualized generation cost can increase with clean repowering because of an increase in that owner's total generation or a change in the composition of its generation.

CAISO top clean repowering opportunities

						Counterfact	tual		Clean repor	wering				
Plant Name	Owner	Ultimate Parent	State Region	Technology	Capacity	Utilization	Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind
					MW	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	MW	MW	MW
Pastoria EnergyFacility, LLC	Calpine- Pastoria EnergyCenter	EnergyCapital Partners	CA CAISO	GasCC	779	37%	930,364	236.1	56%	630,127	255.3			689
Marsh LandingGeneratingStation	Clearway Energy	Onward Energy	CA CAISO	GasCT	828	0%	6,651	49.4	28%	5,362	107.1			667
Desert Star EnergyCenter	Desert Star EnergyCenter SDG&E	Sempra Energy	NV CAISO	GasCC	537	0%	4,801	11.8	30%	4,801	55.6			511
LosEsterosCritical EnergyCenter	LosEsterosCritical EnergyFacility	EnergyCapital Partners	CA CAISO	GasCC	306	4%	43,947	40.3	15%	35,836	48.8			111
Tracy Combined Cycle Power Plant	MRPSan Joaquin Energy	MRPSan Joaquin Energy	CA CAISO	GasCC	336	8%	95,557	49.2	17%	80,344	59.1			108
Walnut Creek EnergyPark	Walnut Creek	NRG Energy	CA CAISO	GasCT	500	0%	2,052	28.3	5%	1,238	37.7			95
Sentinel EnergyCenter, LLC	Diamond Generatingration	Mitsubishi	CA CAISO	GasCT	800	0%	5,552	45.9	4%	3,482	55.0			95
ElCentro Hybrid	Imperial Irrigation District	Imperial Irrigation District	CA CAISO	GasCC	277	15%	153,229	46.5	24%	127,721	51.9			85
ElCentro Hybrid	Imperial Irrigation District	Imperial Irrigation District	CA CAISO	Gas ST	132	0%	871	7.8	22%	519	15.5			78

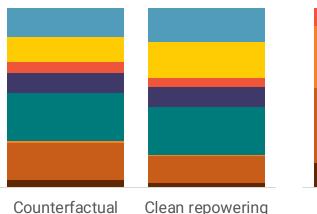
Non-RTO West: Interconnection Fast-Track Rules

Generator Replacement

- Some utilities have processes in place, modeled after MISO's
 - Public Service Co. of Colorado (Xcel), filed 2021
 - PacifiCorp, filed 2022
 - Arizona Public Service Co., filed 2023

Surplus Interconnection Service

- All utilities have processes closely based on FERC Order 845
- Specifics on study timelines and deposits vary by utility


Relevant Examples

- **NV Energy** had planned to replace the 522 MW North Valmy coal plant with 600 MW of **solar + storage**; now moving to switch the plant to gas and add 400 MW of solar + storage.
- **Xcel Energy** is adding **solar** and **long-duration storage** to its retiring coal plant in Pueblo, CO, and plans to add **solar** to two of its oldest natural gas units in New Mexico and Texas.
- Salt River Project is undergoing a repurposing study for its 773 MW Coronado Coal Generating Station; considering renewables + storage, hydrogen, long-duration storage, and advanced nuclear.

- **PacifiCorp is** planning to replace several coal plants with **small** modular nuclear reactors from TerraPower.
- Intermountain Power Agency plans to replace its 1,800 MW coal plant with 840 MW turbines powered by hydrogen generated from renewables.

Non-RTO West opportunities

Generation in 2035

Clean repowering capacity

3.7 GW

Potential

Offshore Wind

Onshore Wind

Fossil Site

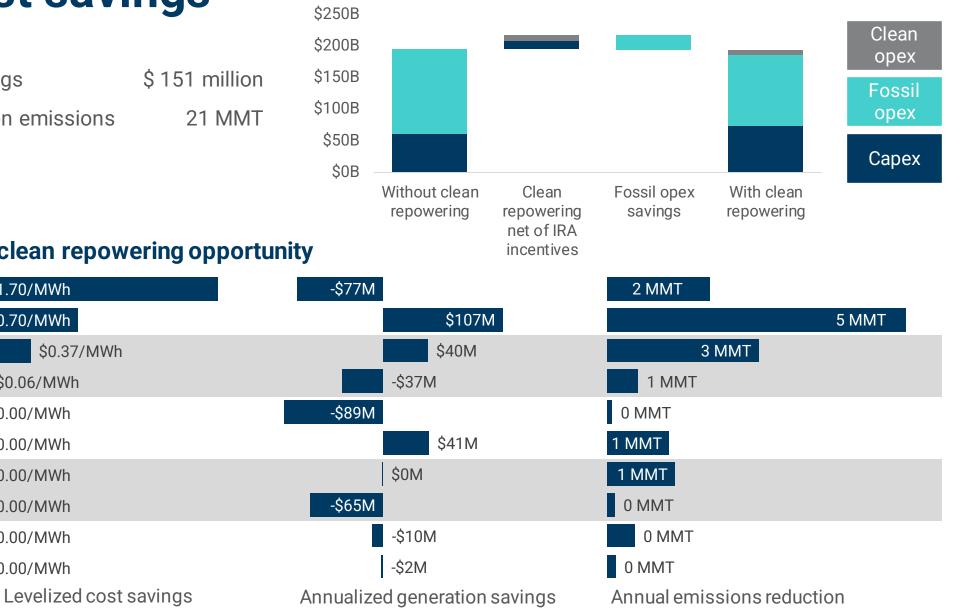
Solar

Selected

Counterfactual baseline

Existing fossil... Clean repowering...

Top 10 generation owners by clean repowering opportunity


Pinnacle West Capital Corp. Xcel Energy, Inc. 3.6 GW 2.7 GW Salt River Project City of Los Angeles 1.5 GW **Riverstone Holdings, LLC** 1.0 GW **Energy Capital Partners** 1.0 GW Puget Energy, Inc. 0.8 GW Platte River Power Authority 0.8 GW **Griffith Energy LLC** 0.6 GW Tri-State Generation & Transmission... 0.5 GW RMI - Energy. Transformed.

Clean repowering sites ••• •

Non-RTO West savings

Total regional annualized savings Total reduction in annual carbon emissions

Cost impact of clean repowering

Top generation owners by clean repowering opportunity

\$1.70/MWh

\$0.70/MWh

\$0.06/MWh

\$0.00/MWh

\$0.00/MWh

\$0.00/MWh

\$0.00/MWh

\$0.00/MWh

\$0.00/MWh

\$0.37/MWh

RMI – Energy. Transformed.

Tri-State Generation & Transmission...

Pinnacle West Capital Corp.

Xcel Energy, Inc.

Salt River Project

City of Los Angeles

Puget Energy, Inc.

Griffith Energy LLC

Riverstone Holdings, LLC

Energy Capital Partners

Platte River Power Authority

58 Negative savings indicate cost increases. A generation owner's levelized cost or annualized generation cost can increase with clean repowering because of an increase in that owner's total generation or a change in the composition of its generation.

Non-RTO West top clean repowering opportunities

		-					Counterfactual			Clean repowering					
Plant Name	Owner	Ultimate Parent	State	e Region	Technology	Capacity	Utilization	Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind
				5		MŴ	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	МŴ	MW	MW
Colstrip	Puget Sound Energy	Puget Energy	MT	West	Coal	2,363	39%	8,503,056	486.2	48%	5,434,265	501.5			1,558
Ocotillo	Arizona Public Service Co	Pinnacle West Capital	AZ	West	GasCT	916	5%	207,929	103.4	30%	113,098	173.6	287	797	
Harquahala GeneratingProject	New Harquahala GeneratingCo	Riverstone Holdings	AZ	West	GasCC	1,277	4%	204,206	145.8	23%	111,393	231.2	210	834	
Coolidge Generation Station	Salt River Project	Salt River Project	AZ	West	GasCT	726	0%	15,529	41.5	32%	10,162	120.8	180	709	
Cherokee	Public Service Co of Colorado	Xcel Energy	CO	West	Gas CC	626	47%	964,337	232,8	47%	391,831	196.8	278	605	
Sundance	Arizona Public Service Co	Pinnacle West Capital	AZ	West	GasCT	605	2%	60,589	47.5	32%	29,902	108.6	250	592	
Desert Basin	Salt River Project	Salt River Project	AZ	West	GasCC	646	43%	939,931	187,9	57%	548,123	226,5	162	640	
West Phoenix	Arizona Public Service Co	Pinnacle West Capital	AZ	West	GasCC	1,101	27%	1,116,714	240,8	32%	734,051	231,1	91	596	
South Point EnergyCenter	South Point EnergyCenter	EnergyCapital Partners	AZ	West	GasCC	708	35%	903,041	190.7	44%	451,300	196.4		101	576
Griffith EnergyLLC	Griffith Energy	Griffith Energy	AZ	West	GasCC	655	36%	807,572	189.6	47%	312,317	196,7			641
Blue Spruce EnergyCenter	Public Service Co of Colorado	Xcel Energy	CO	West	GasCT	398	3%	58,542	40.8	29%	23,299	60.1	178	384	
Cherokee	Public Service Co of Colorado	Xcel Energy	CO	West	Gas ST	381	0%	248	5,0	31%	195	64,9	169	375	
Pawnee	Public Service Co of Colorado	Xcel Energy	CO	West	Coal	552	60%	3,096,143	208,9	62%	1,455,865	226,3	100	0.0	524
Valley (CA)	Los Angeles Department of Water & Power	City of LosAngeles	CA	West	GasCC	630	31%	652,968	206,1	48%	452,569	218,9		274	249
Red Hawk	Arizona Public Service Co	Pinnacle West Capital	AZ	West	GasCC	1.140	49%	1.930.011	351.5	36%	1.069.609	281.5	128	390	210
Rawhide	Platte River Power Authority	Platte River Power Authority	CO	West	GasCT	507	-10 / 10	69,366	52.4	49%	20,286	87,8	120	000	495
AquaFria	Salt River Project	Salt River Project	AZ	West	Gas ST	390	0%	172	34.1	32%	160	84.6	97	386	-00
Havnes	LosAngelesDepartment of Water & Power	City of LosAngeles	CA	West	Gas ST	1,606	0%	1,403	43.2	9%	1,262	85,9	57	454	
Fort St Vrain	Public Service Co of Colorado	Xcel Energy	CO	West	GasCT	281	2%	27,955	26.2	27%	8,984	41.6	124	270	
Kyrene	Salt River Project	Salt River Project	AZ	West	GasCC	201	26%	260,671	68.8	48%	148,024	88.3	72	289	
Arlington Valley EnergyFacility	Arlington Valley	Capital Power	AZ	West	GasCC	713	20% 50%	1,201,307	244.8	40% 39%	662,614	197.4	30	307	
JMShafer GeneratingStation	Tri-State G&TAssn	Tri-State G&T	CO	West	GasCC	397	50 % 19%	267,670	244.8 92.6	39 % 26%	123,857	82,4	30 104	226	
Ũ										20% 31%		40.6			
Fountain Valley PowerFacility	Fountain Valley Power	IIF BH Investments	00	West	GasCT GasCT	228 300	4% 9%	44,832 138,242	29.2 43.3	40%	16,455 43,995	40.6 54,5	102	221	000
Manchief Electric GeneratingStation	Public Service Co of Colorado	Xcel Energy	00	West				,			,				289
Rawhide	Platte River PowerAuthority	Platte River Power Authority	CO	West	Coal	294	11%	274,480	26.5	49%	183,895	53.2		100	280
ApacheStation	Arizona Electric PwrCoop	Arizona Electric PwrCoop	AZ	West	Gas ST	286	8%	121,526	34.3	30%	64,880	44.3		199	78
Coyote Springs II	Avista	Avista	OR	West	GasCC	287	44%	403,081	68.4	59%	245,689	71.4			272
Frederickson PowerLP	Atlantic Powerration	Atlantic Powerration	WA	West	GasCC	318	38%	393,439	71.9	46%	247,837	85.4		17	246
Evander Andrews Power Complex	Idaho PowerCo	IDACORP	ID	West	GasCT	271	0%	5,940	19 <u>.</u> 0	28%	2,900	34.9		89	170
Comanche (CO)	Public Service Co of Colorado	Xcel Energy	CO	West	Coal	1,635	34%	4,687,462	249.2	23%	2,493,394	244.9			252
Harbor	LosAngelesDepartment of Water & Power	City of LosAngeles	CA	West	GasCC	246	0%	1,087	19.2	29%	985	40.3		228	
Frank Knutson	Tri-State G & TAssn	Tri-State G&T	CO	West	GasCT	154	1%	13,175	10.1	29%	3,855	21.6	68	149	
Goldendale GeneratingStation	Puget Sound Energy	Puget Energy	WA	West	GasCC	303	62%	607,163	79.7	66%	410,000	73.6			216
Cholla	Arizona Public Service Co	Pinnacle West Capital	AZ	West	Coal	1,129	7%	765,212	104.0	10%	408,687	103.6			213
Scattergood	LosAngelesDepartment of Water & Power	City of LosAngeles	CA	West	GasCT	214	1%	13,332	15.4	32%	11,019	32.9		211	
Yucca	Arizona Public Service Co	Pinnacle West Capital	AZ	West	GasCT	241	3%	46,024	20.6	19%	44,990	41.3	86	119	
Valmont Combustion Turbine Project	Public Service Co of Colorado	Xcel Energy	CO	West	GasCT	142	0%	1,828	8.0	29%	600	21.9	64	138	
Sutter EnergyCenter	CalpineSutter	EnergyCapital Partners	CA	West	GasCC	636	42%	933,832	196.5	30%	513,340	163.6		7	192
Dave Gates GeneratingStation	NorthWestern Energy(MTwind/thermal)	NorthWestern	MT	West	GasCT	203	17%	205,924	20.4	36%	143,492	27.1		196	
Magnolia PowerProject	Southern California PPA	Southern California PPA	CA	West	GasCC	388	48%	640,100	149.0	52%	494,509	139.4		186	
Bennett Mountain	Idaho PowerCo	IDACORP	ID	West	GasCT	173	1%	7,908	11.4	29%	3,684	23.9			164
Spindle Hill EnergyCenter	Invenergy Services	Invenergy	CO	West	GasCT	420	5%	108,078	42.0	9%	37,324	40.6	48	103	
Yucca	Imperial Irrigation District	Imperial Irrigation District	AZ	West	Gas ST	87	1%	3,787	8.3	32%	2,383	23.8	62	86	

RMI – Energy. Transformed.

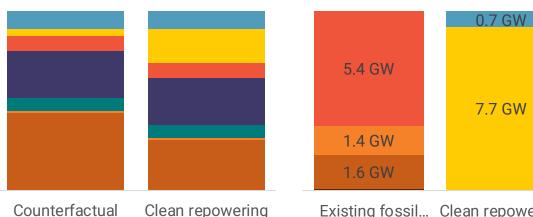
Utilization is essentially the capacity factor of the interconnection, it is calculated as the total generation of all the resources associated with the incumbent fossil generator divided by the capacity of the incumbent fossil generator multiplied by the number of hours in the period.

ISO-NE: Interconnection Fast-Track Rules

Generator Replacement

• No separate interconnection study/process currently in place

Surplus Interconnection Service


• Process follows FERC Order 845 (compliance filing approved March 2020)

Relevant Examples

- Several offshore wind farms in development are exploring the ability to use interconnection infrastructure from retiring or retired fossil plants along the New England coast, such as the Brayton Point coal plant in Somerset, MA, which is being redeveloped into an offshore wind supply chain and staging hub. The South Coast Offshore Wind Project has plans to interconnect via Brayton Point's substation.
- Advocates are currently working to retire the **Merrimack Station** in Bow, NH, the last coal plant in New England. It failed to clear the latest ISO-NE capacity market, meaning its days are numbered. No clean repowering project has been considered yet due to ISO-NE's lack of a separate process.

ISO-NE opportunities

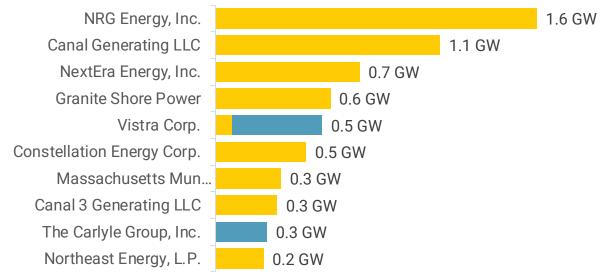
Generation in 2035

Counterfactual baseline

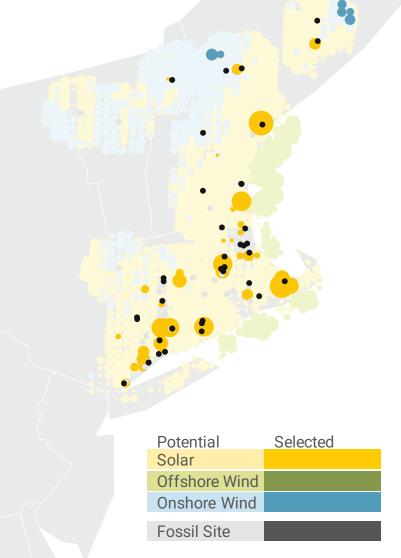
Existing fossil... Clean repowering...

Clean repowering capacity

Solar Wind


Other Nuclear

Hydro Gas GT


Gas CC

Coal

Top 10 generation owners by clean repowering opportunity

Clean repowering sites

ISO-NE savings

Total regional annualized savings Total reduction in annual carbon emissions

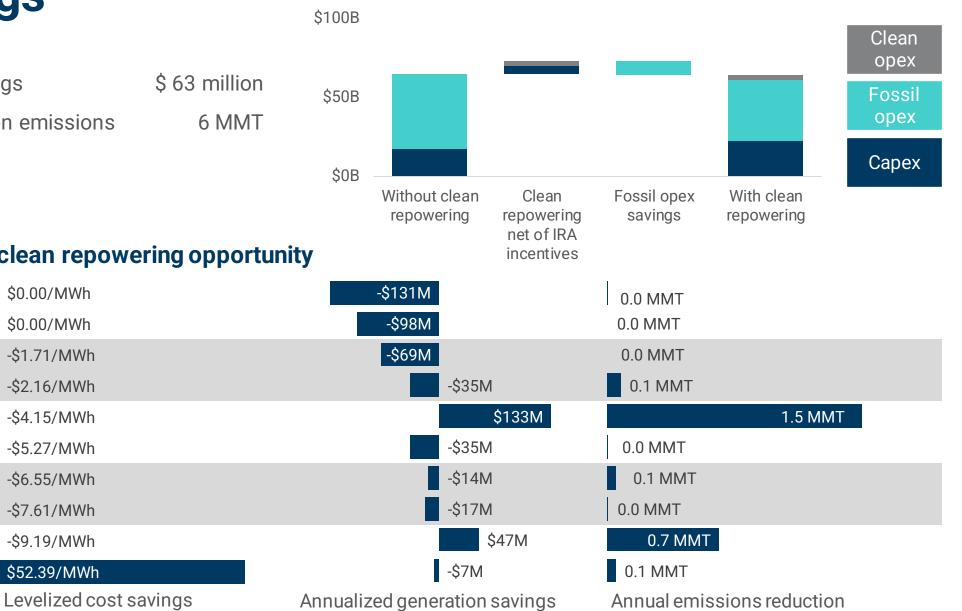
NRG Energy, Inc.

NextEra Energy, Inc. \$1.71/MWh

Granite Shore Power -\$2.16/MWh

Vistra Corp

Canal Generating LLC


Constellation Energy Corp.

Canal 3 Generating L

The Carlyle Group,

Northeast Energy, L.P.

Cost impact of clean repowering

Top generation owners by clean repowering opportunity

\$0.00/MWh

\$0.00/MWh

-\$4.15/MWh

-\$5.27/MWh

-\$6.55/MWh

-\$7.61/MWh

-\$9.19/MWh

\$52.39/MWh

RMI – Energy. Transformed.

Massachusetts Mun Wholes Electric

62 Negative savings indicate cost increases. A generation owner's levelized cost or annualized generation cost can increase with clean repowering because of an increase in that owner's total generation or a change in the composition of its generation.

ISO-NE top clean repowering opportunities

	-						Counterfact	ual		Clean repowering						
Plant Name	Owner	Ultimate Parent	Stat	e Region	Technology	Capacity	Utilization	Emissions	Annualized NPV	Utilization	Emissions	Annualized NPV	Battery	Solar	Wind	
						MW	%	tonne/yr	\$million/yr	%	tonne/yr	\$million/yr	MW	MW	MW	
Canal	Canal Generating	Canal Generating	MA	ISONE	Other Fossil	1,165	0%	-	129 <u>.</u> 9	26%	-	226.1		1,148		
William FWymanHybrid	FPLEnergy Wyman	NextEra Energy	ME	ISONE	Other Fossil	846	0%	-	57.7	25%	-	130.8		833		
Maine Independence Station	Casco Bay EnergyCo	Vistra	ME	ISONE	GasCC	550	25%	484,672	130.2	42%	214,012	142 <u>.</u> 9			459	
Middletown	Middletown Power	NRG Energy	CT	ISONE	Other Fossil	433	0%	648	31.3	25%	228	70.5		426		
Montville Station	NRGMontville Operations	NRG Energy	CT	ISONE	Other Fossil	420	0%	1,053	31.8	25%	596	67.7		409		
Newington	Granite Shore Power	Granite Shore Power	NH	ISONE	Gas ST	414	0%	1,112	41.2	20%	831	61.3		396		
Middletown	Middletown Power	NRG Energy	CT	ISONE	Gas ST	353	0%	745	33.8	20%	289	51.0		338		
Canal	Canal 3 Generating	Canal 3 Generating	MA	ISONE	GasCT	330	0%	5,649	19.8	20%	2,368	36.4		316		
Rumford Power LLC	Rumford Power	TheCarlyle Group	ME	ISONE	GasCC	275	19%	185,636	55.2	44%	74,978	61.6			264	
Stony Brook	Massachusetts Mun Wholes Electric Co	Massachusetts Mun Wholes Electric Co	MA	ISONE	Other Fossil	280	0%	-	18.6	19%		34.1		263		
Exelon West Medway II LLC	Exelon Power	Constellation Energy	MA	ISONE	GasCT	264	0%	2,013	15.1	20%	1,089	29.0		253		
BellinghamCogenerationFacility	Northeast EnergyAssociates	Northeast Energy	MA	ISONE	GasCC	386	9%	119,431	53.6	18%	68,235	60.3		247		
GenConn Devon LLC	GenConn Devon	GenConn Devon	СТ	ISONE	Other Fossil	242	0%	-	11,9	25%	-	33,2		237		
GenConn Middletown LLC	GenConnMiddletown	GenConnMiddletown	СТ	ISONE	Other Fossi	242	0%	-	11.7	25%	-	34,2		237		
Devon Station	Devon Power	NRG Energy	СТ	ISONE	Other Fossil	430	0%	-	11.1	13%	-	31.0		220		
Wallingford Energy	Wallingford Energy	LSPower	CT	ISONE	GasCT	350	0%	2.829	20.0	12%	1.054	30.7		202		
Bucksport Generation LLC	Bucksport Generation	Bucksport Generation	ME	ISONE	GasCT	187	3%	23,662	14.3	21%	16,439	23.3		179		
New Haven Harbor	Generation Bridge II New Haven	Generation Bridge II New Haven	CT	ISONE	Other Fossil	182	0%		8.6	20%	-	15,9		172		
Androscoggin EnergyCenter	Pixelle Androscoggin	Pixelle Androscoggin	ME	ISONE	GasCT	164	6%	37,116	24.2	23%	23,503	30.1		155		
Exelon Medway LLC	Exelon Power	Constellation Energy	MA	ISONE	Other Fossil	135	0%	-	5.2	25%	-	18.4		133		
Milford PowerLP	Starwood EnergyGroup Global	Starwood EnergyGroup Global	MA	ISONE	GasCC	249	4%	39,975	30.6	12%	20,597	33.4		115		
Cleary Flood Hybrid	City of Taunton	City of Taunton	MA	ISONE	GasCC	118	0%	1,329	10.5	20%	662	15,9		113		
Potter Station 2	Town of Braintree - (MA)	Town of Braintree - (MA)	MA	ISONE	GasCT	116	0%	597	6.0	20%	225	12.1		111		
Cos Cob	Connecticut Jet Power	NRGEnergy	CT	ISONE	Other Fossil	115	0%	-	4.4	21%	-	11.5		111		
Potter Station 2	Town of Braintree - (MA)	Townof Braintree - (MA)	MA	ISONE	GasCC	101	0%	1,443	7.9	20%	887	13.2		97		
Schiller	Granite Shore Power	Granite Shore Power	NH	ISONE	Coal	100	6%	86,047	16.1	25%	71,064	20.6		96		
Masspower	Masspower	Vistra	MA	ISONE	GasCC	261	17%	151,456	49.0	18%	104,414	48,2		86		
Stony Brook	Massachusetts Mun Wholes Electric Co	Massachusetts Mun Wholes Electric Co	MA	ISONE	GasCC	255	4%	40,135	32.6	9%	23,453	35.0		81		
ALPierce	Connecticut Mun Elec EngyCoop	Connecticut Mun Elec EngyCoop	CT	ISONE	GasCT	84	478	256	4.3	20%	158	8,8		80		
Montville Station	NRGMontville Operations	NRGEnerav	CT	ISONE	Gas ST	75	0%	230	4 <u>.</u> 6.7	20%	-	10.1		72		
M Street Jet	Massachusetts Bay Trans Auth	Massachusetts Bay Trans Auth	MA	ISONE	Other Fossil	69	0%	0	2.6	20 % 25%	-	9.1		68		
Waters River	City of Peabody- (MA)	City of Peabody- (MA)	MA	ISONE	GasCT	65	0%	24	3.3	20%	- 8	6.8		62		
Algonquin Windsor Locks	Algonquin Windsor Locks	AlgonquinPower& Utilities	CT	ISONE	GasCC	71	1%	1,883	6,3	20 <i>%</i> 16%	825	9.0		54		
Deer Island Treatment Plant	Massachusetts Wtr Rauth-Deer I	Massachusetts Wtr RAuth-Deer I	MA	ISONE	Other Fossil	52	0%	1,003	1,9	20%	17	4.7		50		
Exelon Framingham LLC	Exelon Power	Constellation Energy	MA	ISONE	Other Fossil	43	0%	-	1.5	20 % 25%	- 17	5.7				
Merrimack	Granite Shore Power	Granite Shore Power	NH	ISONE	Other Fossil	37	0%	-	1.7	25%	-	5.2		37		
Dartmouth PowerAssociates LP			MA	ISONE	GasCC	74		- 26,847	1.4	25% 15%	- 16,051	11.8		37		
TannerStreet Generation	Dartmouth PowerAssociates BTGeneration Holdings	Dartmouth PowerAssociates BTGeneration Holdings	MA	ISONE	GasCC GasCC	74 151	11% 1%	26,847 7,972	9.2	15% 4%	4,124	10.1		31 26		
Dartmouth PowerAssociates LP	Dartmouth PowerAssociates	Dartmouth PowerAssociates	MA	ISONE	GasCC GasCT	23	1% 0%	7,972	9.2 1.3	4% 20%	4,124 25	2.4		20 22		
								/8			25					
Branford	Connecticut Jet Power	NRG Energy	CT	ISONE	Other Fossil	22	0%	-	0.8	25%	-	3.0		22		
Franklin Drive	Connecticut Jet Power	NRG Energy	CT	ISONE	Other Fossil	22	0%	-	0.8	25%	-	2.9		22		
Torrington Terminal	Connecticut Jet Power	NRG Energy	CT	ISONE	Other Fossil	22	0%	-	0.8	25%	-	2.9		22		
Schiller	Granite Shore Power	Granite Shore Power	NH	ISONE	Other Fossil	21	0%	-	1.0	25%	-	3.0		21		

RMI – Energy. Transformed.

Utilization is essentially the capacity factor of the interconnection, it is calculated as the total generation of all the resources associated with the incumbent fossil generator divided by the capacity of the incumbent fossil generator multiplied by the number of hours in the period.

NYISO: Interconnection Fast-Track Rules

Generator Replacement

- Capacity Resource Interconnection Service (CRIS) transfer process allows Capacity Interconnection Rights (CIRs) to be transferred to new facility at same electrical location if the new facility becomes operational within three years from deactivation of original facility, with no deliverability evaluation required (also permitted for facilities that are not deactivating)
- New facilities must still go through the interconnection queue for full interconnection service in addition to CIRs

Surplus Interconnection Service

- No process NYISO received a waiver from FERC for Order 845 compliance due to NYISO's unique treatment of existing generating resources via its Minimum Interconnection Standard process
 - FERC's Order 845 surplus service assumes that resources dispatch at full output under normal conditions and thus might have "headroom" available for transfer.
 - NYISO's Minimum Interconnection Standard instead assumes that a facility can be redispatched to mitigate adverse reliability impacts, hence there is no surplus "headroom" available for transfer

Relevant Examples

• Elevate Renewables is developing a utility-scale energy storage facility at the Arthur Kill Generating Station located in the borough of Staten Island, New York City, NY.

ERCOT: Interconnection Fast-Track Rules

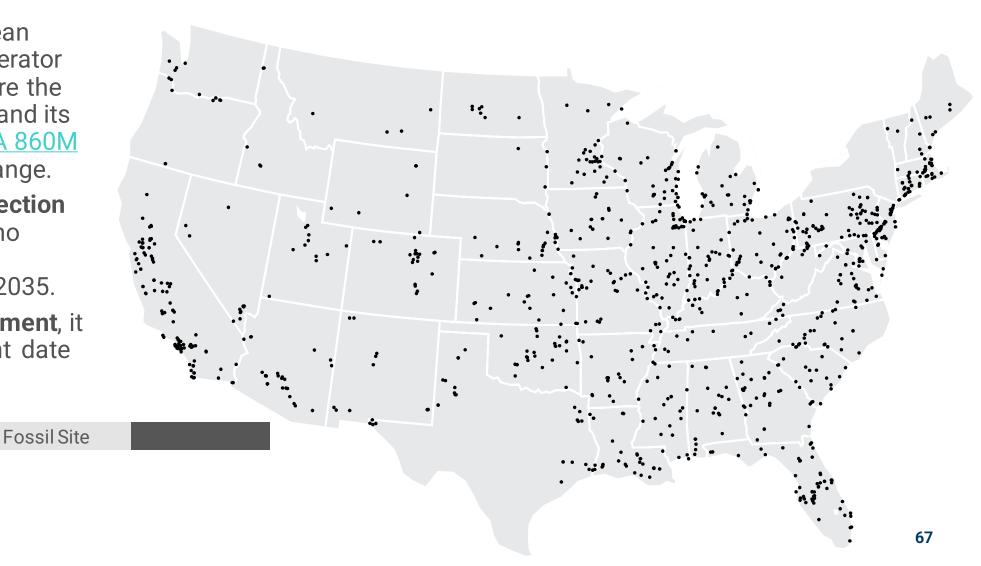
Generator Replacement

- Replacement must be "in-kind" or below an aggregate real power rating of 10 MW (see <u>Planning Guide § 5</u>)
 - Otherwise, must enter through the standard interconnection process

Surplus Interconnection Service

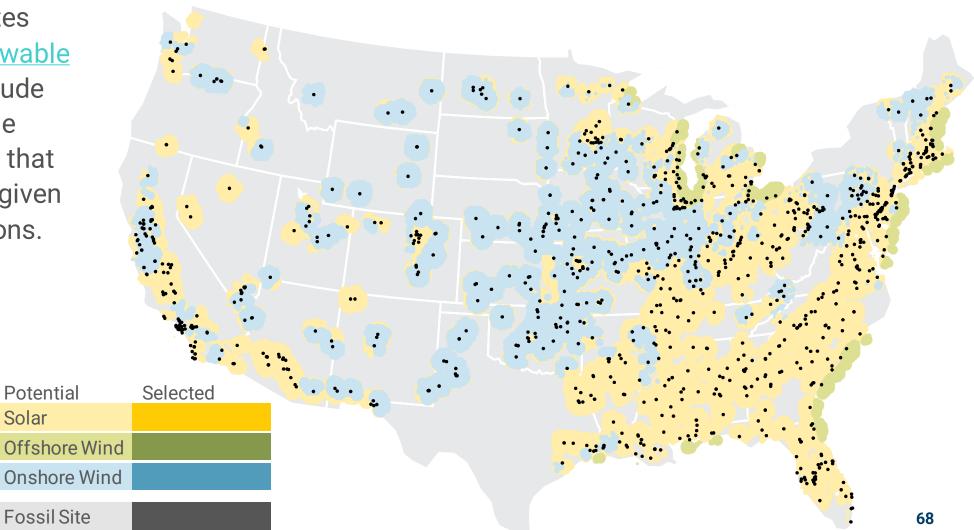
- ERCOT is not FERC-jurisdictional so does not have to comply with Order 845
- Recently created a separate interconnection process to add battery energy storage to an existing solar or hybrid resource (see <u>ERCOT Key Topic Concept #13</u>)

Relevant Examples


• None

Clean Repowering: Modeling approach

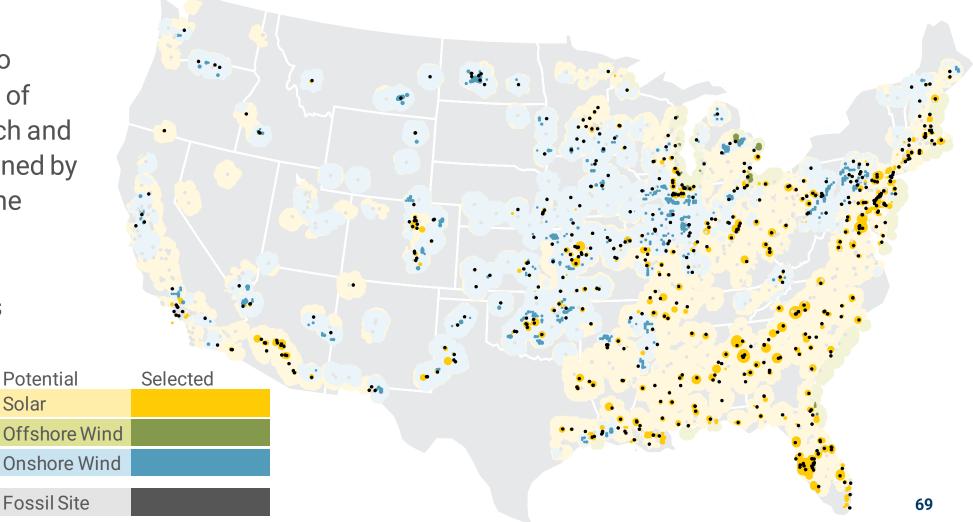
The model begins with all major **existing fossil generators** in a grid region eligible for clean repowering


To be considered for clean repowering, a fossil generator must be in a region where the relevant process exists and its retirement date from EIA 860M must be in the correct range.

- For surplus interconnection service, it must have no retirement date or a retirement date after 2035.
- For **generator replacement**, it must have a retirement date before 2036.

It identifies **potential renewable sites** within 45 km of each fossil site

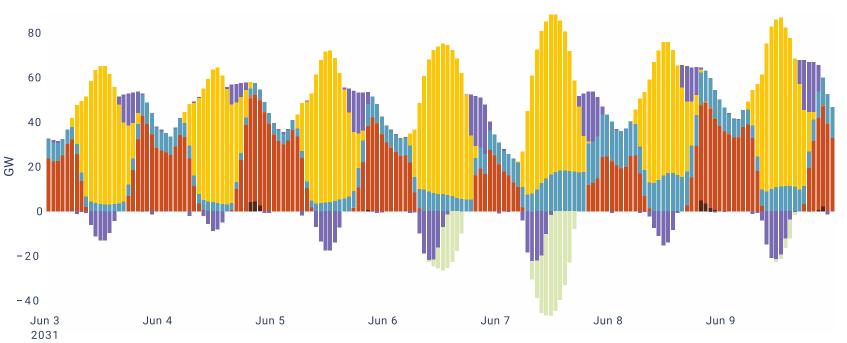
Potential renewable sites come from <u>NREL Renewable</u> <u>Supply Curves</u> and include resource quality and the quantity of renewables that can be deployed there given reference land exclusions.



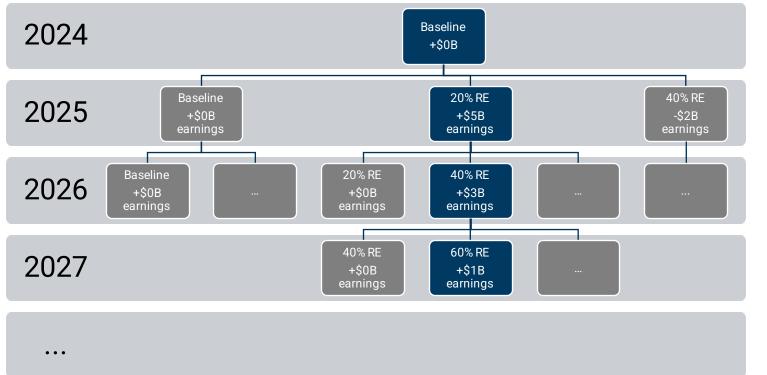
It then creates a set of portfolios in which it selects increasing amounts of renewables and storage at the sites where renewables are most attractive relative to the incumbent fossil generator

It selects renewables to maximize replacement of historical fossil dispatch and minimize cost constrained by siting limitations and the incumbent generator's capacity to avoid transmission upgrades beyond spur lines.

Potential


Solar

RMI – Energy. Transformed.


For each portfolio, it **simulates hourly operations** using 15 years of historical data to estimate production costs, emissions, and reliability under different weather and fuel price conditions

- Simulations employ a simplified economic dispatch logic to determine fossil and storage operations before and after renewable deployment.
- Interconnection constraints are enforced by preventing the hourly output of clean repowering renewables and the associated incumbent fossil generator from exceeding the fossil generators' capacity.
- Fossil operating costs are estimated using a regression of historical plantlevel FERC 1, EIA 860 and 923, and EPA <u>CAMD</u> fuel and operating cost and operational data to best reflect impacts of changing utilization patterns on generation costs.

Finally, for each region it selects the sequence of **portfolios that maximizes utility earnings** without increasing the region's aggregate levelized cost of generation, **factoring in applicable IRA provisions**

Optimal portfolio selection employs detailed financial analysis using:

- utility-specific financial metrics such as allowed ROE/ROR and equity ratios; and
- Inflation Reduction Act provisions such as New ERA, EIR, and direct pay/transferability.