

Policy Principles for Enabling Virtual Power Plants (VPPs) Webinar

April 9, 2024

OBJECTIVES

- 1. Share an overview of the VPP policy principles published by VP3
- 2. Discuss how regulators and policymakers can leverage the principles to scale VPPs to achieve affordability, reliability, and decarbonization outcomes
- 3. Open it up to Q&A

AGENDA

- 5 min: Opening Remarks from Ted
 Thomas, former Chair of the Arkansas
 Public Service Commission
- 25 min: Presentation on the VPP policy principles by Avery McEvoy, RMI
- 25 min: Q&A, with Avery and Angela Kent, Senior Manager of Regulatory Affairs at EnergyHub

Logistics

- Slides and this recording are posted to RMI's website here
- Feel free to click through the links throughout the presentation, and see the final slide for additional resources and working groups on related topics

Opening Remarks

Ted Thomas

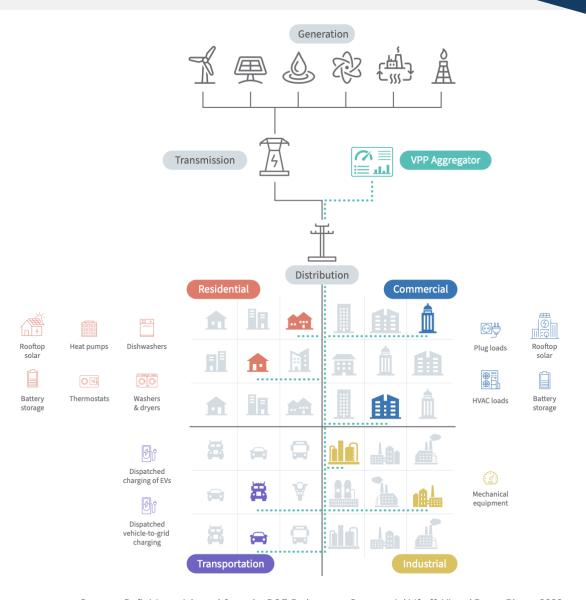
Former Chair of the Arkansas Public Service Commission

VPP Policy Principles Presentation

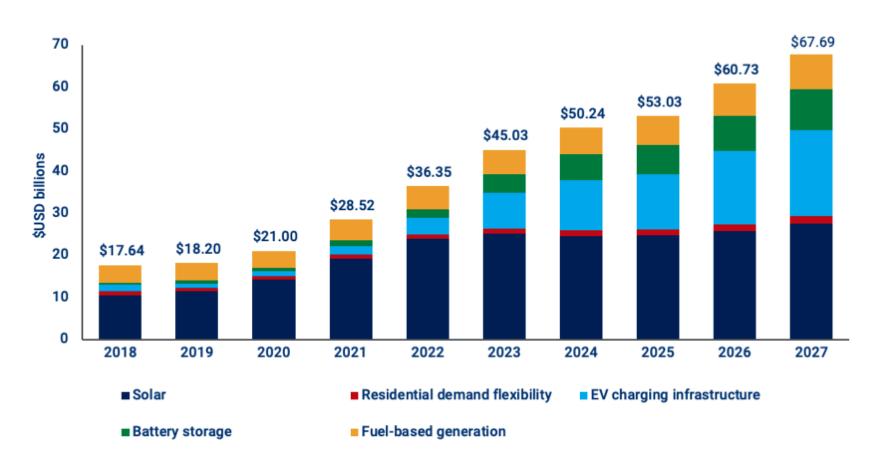
Avery McEvoySenior Associate, Regulatory & Policy Lead, VP3
RMI

VPPs: Part of the Regulator and Policymaker Toolkit

VPPs can be part of the toolkit to achieve affordability, reliability, safety, and decarbonization objectives for the grid and its customers.


These policy principles serve as a guide for the core set of conditions to enable VPPs to fairly compete in the energy industry, deliver grid services, provide energy and non-energy benefits to customers, and support the above objectives.

What is a Virtual Power Plant?


A virtual power plant (VPP) is an aggregation of grid-integrated, distributed energy resources* (DERs) that can balance electrical loads & provide utility-scale & utility-grade grid services.

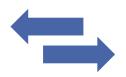
* Distributed energy resources (DERs) include equipment located on or near the site of end-use that can provide electricity demand flexibility, electricity generation, storage, or other energy services at a small scale (sub-utility scale) and are typically connected to the lower-voltage distribution grid.

Between 2022 and 2027, the market for DERs—the building blocks of VPPs—will double, representing 262 GW of capacity.

This nearly matches the expected 272 GW of utility-scale resources to be installed over the same period of time.

Source: Wood Mackenzie Grid Edge, US Distributed Solar and Energy Storage Service

VPPs can play a critical role in future power systems: providing benefits to households, businesses, and society



Resource Adequacy

Integrate distributed generation and storage capacity

Shift demand to follow supply

Defer grid capex (generation, T&D)

Avoid fuel costs

Compensate consumers and businesses

Reliability & Resilience

Integrate back-up power

Eliminate singlepoint-of-failure

Decarbonization & Air Pollution Reduction

Add distributed renewable generation

Reduce curtailment of renewables

Reduce reliance on fossil fuels

T&D Infrastructure Relief

Increase efficiency by smoothing peaks

Alleviate congestion with local dispatch

Community Empowerment

Enable consumers to optimize energy costs, use, and generation source

Retain and create good jobs

Versatility & Flexibility

Customize design to fit grid needs

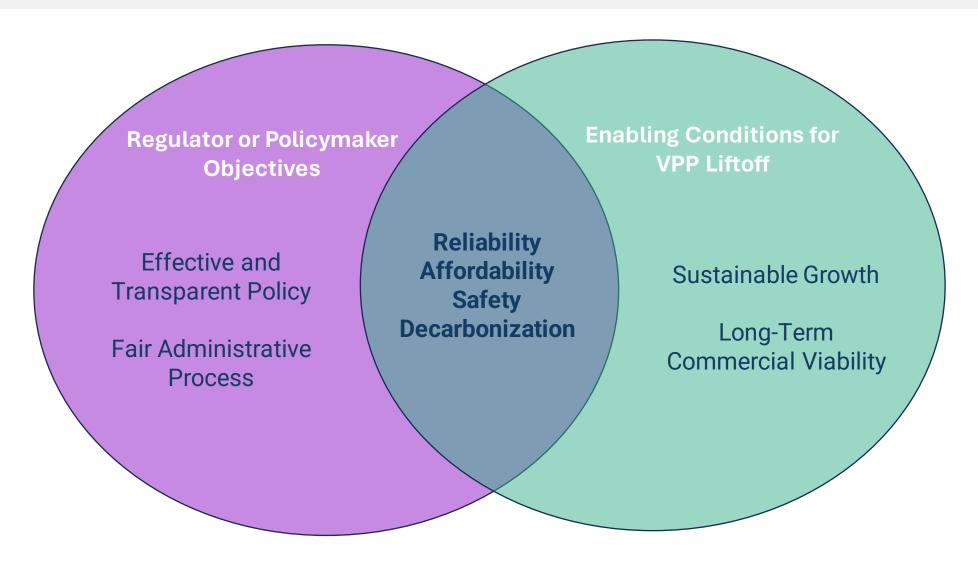
Reconfigure as needs evolve

In 2023, RMI launched VP3 to address key barriers and drive VPP market growth

ABOUT	MISSION	RESOURCES
An initiative housed within RMI and funded by industry leaders spanning the automotive, building, energy service, and software sectors	To catalyze industry and change the necessary policies, regulations, and market rules for VPPs to scale in ways that benefit communities and society	WEBSITE → VP3.io INSIGHT BRIEF → Download Here

MEMBERS

Policy Principles to Enable VPPs



Category	Principle
DER Asset Base	1. Advance policies to expand beneficial DER adoption by diverse end-users.
	2. Enable inclusion of all DER technologies in VPPs.
VPP Design	3. Utilize best practices in program design.
	4. Use open communication protocols and standards.
	5. Enable VPP participation in wholesale and retail markets.
	6. Regularly update grid service needs to reflect the evolving grid.
	7. Support comprehensive utility planning and investment decisions.
Equitable Compensation	8. Fairly compensate VPPs for services delivered.
	9. Enable value stacking to maximize benefits.
	10. Support policies that value VPP contributions to resilience, reliability, and sustainability.
	11. Uphold equitable penalties and liabilities.
Customer Experience	12. Maintain customer choice in DER operational control.
	13. Uphold customer data ownership and simplify enrollment.
	14. Protect and educate customers.
	15. Support customer participation in structuring VPP offerings through procedural equity.
Utility and System Operator Roles	16. Encourage participation of competitive hardware and service providers.
	17. Use open-source software and make grid data available.

RMI – Energy. Transformed.

How to Leverage These Principles

Today:

- Regulatory or policy circumstance or perspective
- 2. Common VPP challenges related to that circumstance
- How a principle can respond to these challenges and suggest a path forward
- 4. An example of where this has been done well

Deployment

Regulatory or Policy Circumstance Examples

If you are ruling on the effective development of non-wires programs to address distribution system congestion

Related Challenges that VPPs Face

VPPs need a sufficient DER asset base to provide grid services

VPP Policy Principle That Supports a Solution

P1: Advance policies to expand beneficial DER adoption by diverse end-users.

e.g. tax credits and rebates, utility up-front financing, utility on-bill financing, DER carve-outs in energy portfolio standards

Examples of Where This Has Been Done Well

- Green Mountain Power's
 Powerwall Lease and Bring-Your-Own-Device programs
 saw long waitlists and
 recently-lifted enrollment
 caps
- Rocky Mountain Power's
 Wattsmart Battery <u>Program</u>
 with sonnen has a <u>simple</u>
 upfront incentive and annual
 bill credits

VPP Design

Regulatory or Policy Circumstance Examples

If you are outlining the high-level specifications for a VPP program

If you've opened a proceeding investigating VPP program design

Related Challenges that VPPs Face

Specifications can preclude VPPs (minimum aggregation sizes, real-time telemetry requirements)

Designing bespoke VPP programs across the US can lead to high implementation costs

VPP Policy Principle That Supports a Solution

P3: Utilize best practices in program design.

e.g. leverage best practices from established, successful, and jurisdictionally relevant examples to avoid common pitfalls; utilities and third parties share lessons learned

Examples of Where This Has Been Done Well

- ConnectedSolutions
 originated in Massachusetts
 but has led to the adoption of
 customer battery funding
 programs in all six New
 England states
- Stay tuned for the upcoming VP3 Virtual Power Plant Flipbook for more case studies on successful VPP program design

Equitable Compensation

Regulatory or Policy Circumstance Examples

If you are investigating the value of or compensation for DERs

If you are investigating the costefficacy of demand-side programs

Related Challenges that VPPs Face

VPPs aren't valued or compensated for the full suite of benefits they can provide (including non-energy benefits)

Program funding can be temporary or subject to budget cuts

VPP Policy Principle That Supports a Solution

P9: Enable value stacking to maximize benefits.

e.g. stacking wholesale market and retail utility grid services, clear eligibility criteria, doublecounting prevention rules

Examples of Where This Has Been Done Well

- ConnectedSolutions
 customers in MA can
 participate in both the
 National Grid program and
 ISO New England forward
 capacity market.
- HECO's Grid Service Purchase
 Agreement 2 programs,
 commonly referred to as the
 <u>Power Partnership Programs</u>,
 compensate value stacked
 resources, including capacity
 build, capacity reduction, and
 fast frequency response.

RMI – Energy. Transformed.

Customer Experience

Regulatory or Policy Circumstance Examples

If you are ruling on clickthrough authorization processes between utilities and third-party VPP providers

Related Challenges that VPPs Face

Customer enrollment has attrition due to complexity

Customers might not sign up to VPP programs

VPP Policy Principle That Supports a Solution

P13: Uphold customer data ownership and simplify enrollment.

e.g. simple, secure, quick, transparent, reliable customer enrollment and disenrollment processes; efficient timeline for utility planning and contracting processes to integrate third parties; enrollment at the device's point of sale

Examples of Where This Has Been Done Well

- Xcel's <u>AC Rewards</u> Program <u>tripled</u> smart thermostat enrollment from May to August 2020 through onboarding a new DRMS and implementing a user-friendly online enrollment process
- Texas has a third party, <u>Smart</u>
 <u>Meter Texas</u>, that maintains all
 customer data with easy third-party
 access
- In CA's <u>DSGS Option 3</u>, customers authorize aggregators to use their device for participation in the program. Then, sub-metered interval data is shared directly from the battery inverter to the CA Energy Commission.

Utility and System Operator Roles

Regulatory or Policy Circumstance Examples

If you are ruling on the ability of third-party aggregators to enact contracts with utilities

Related Challenges that VPPs Face

Contracts between utilities and third-party aggregators vary greatly by jurisdiction

VPP Policy Principle That Supports a Solution

P16: Encourage participation of competitive hardware and service providers.

e.g. providing services such as customer enrollment and support, device management and dispatch, single settlement point for the administrator, derisking underperformance across a fleet, program administration

Examples of Where This Has Been Done Well

- Last October, Missouri <u>lifted</u>
 <u>its ban</u> preventing third
 parties from bidding demand
 response into wholesale
 markets
- Ontario's IESO supports thirdparty <u>DER participation in</u> <u>wholesale markets</u> and is currently exploring <u>expanding</u> third-party smart meter data access

VPPs: Part of the Regulator and Policymaker Toolkit

VPPs can be part of the toolkit to achieve affordability, reliability, safety, and decarbonization objectives for the grid and its customers.

These policy principles serve as a guide for the core set of conditions to enable VPPs to fairly compete in the energy industry, deliver grid services, provide energy and non-energy benefits to customers, and support the above objectives.

Q&A

Avery McEvoy

Senior Associate, Regulatory & Policy Lead, VP3 | RMI

Angela Kent

Senior Manager, Regulatory Affairs | EnergyHub

Thank you!

amcevoy@rmi.org

Resources

VP3 Resources

- VP3 Website
- <u>VPP Policy Principles</u> paper, RMI, 2024
- Principles Webinar Recording, April 9, 2024
- <u>Virtual Power Plants, Real Benefits</u> report, RMI, 2023
- Virtual Power Plant Flipbook, coming soon, 2024

Sources from VPP Policy Principles Paper

- The Demand Response Baseline, EnerNOC, Inc., 2009
- <u>Design Principles for (Local) Markets for Electricity System Services, Smart Energy Europe, 2019</u>
- Flex Assure Code of Conduct, Flex Assure, 2021
- <u>The Future of our Grids: a Smart, Efficient, and Flexible Network of Electrified Consumers</u>, Smart Energy Europe, 2023
- Jennifer Downing et al., <u>Pathways to Commercial Liftoff: Virtual Power Plants</u>, Department of Energy, 2023
- Lynn P. Costantini et al., <u>NARUC Grid Data Sharing Playbook</u>, National Association of Regulatory Utility Commissioners, 2023
- A Market-Based Approach to Local Flexibility: Design Principles, Europex Association of European Energy Exchanges, 2020
- Michael Murray, Laura Kier, and Bob King, P.E., <u>Energy Data: Unlocking</u> <u>Innovation with Smart Policy</u>, Mission:data and AEMA, 2017
- Regulators' Financial Toolbox: Virtual Power Plants, National Association of Regulatory Utility Commissioners, 2023
- Policy Principles, Flex Coalition, 2023

Additional Resources

- Real Reliability: The Value of Virtual Power, Brattle, 2023
- Virtual Power Plants and Energy Justice, NREL, 2023
- Guidelines for Selecting a Communications Protocol for Vehicle-Grid Integration, SEPA, 2020
- NARUC-NASEO <u>DER Integration and Compensation</u> resources and activities
- NASEO GEB working group
- NASEO GEB resources page
- ASHRAE Task Force for Building Decarbonization
- NAESB-DOE standard distribution services contract <u>press release</u> and working group <u>calendar</u> (non-member registration and agendas available there)
- NASEO-NARUC <u>Microgrids State Working Group</u>
- ESIG DER Task Forces
- DOE <u>Operational Coordination work</u>, including <u>paper on</u> <u>standard distribution services contract</u>, 2023
- DOE Connected Communities
- Active Efficiency Collaborative