

HomebuildersCAN: Official Launch

April 3, 2024

Today's Speakers

CHRIS MAGWOOD

> RMI, Manager

TRACY HUYNH

RMI, Senior Associate PAULA MELTON

BuildingGreen, Editorial Director BEVERLY CRAIG

MassCEC, Program Director

ERIC WERLING

Owner, Home Innovation Strategies ANDREW GUIDO

Empire Communities, VP Sustainability & Innovation

Why focus on embodied carbon?

Emissions from materials for new homes in the United States is equivalent to the total emissions from entire countries.

2023 RMI Report 'Hidden Climate Impact of Residential Construction'

Decarbonization of buildings a national priority:

Department of Energy

DOE Releases First Ever Federal Blueprint to Decarbonize America's Buildings Sector

APRIL 2, 2024

Increase building energy efficiency

Reduce on-site energy use intensity in buildings 35% by 2035 and 50% by 2050 vs. 2005

Accelerate on-site emissions reductions Reduce on-site GHG emissions in buildings 25% by 2035 and 75% by 2050 vs. 2005

Transform the grid edge Reduce electrical infrastructure costs by tripling demand flexibility potential by 2050 vs. 2020

Minimize embodied life cycle emissions

Reduce embodied emissions from building materials and construction 90% by 2050 vs. 2005

https://www.energy.gov/eere/articles/decarbonizing-us-economy-2050

Solution:

Homebuilders take the lead in understanding, measuring, reporting & acting strategically to adopt and scale profitable, low-embodied carbon building practices

HomebuildersCAN will support homebuilders to:

• Advocate for the inclusion of embodied carbon performance in financing mechanisms

regulator needs, and sustainability reporting

SECTOR ALIGNMENT

HomebuildersCAN Events Calendar

April 3, 2024	HomebuildersCAN Launch (Public)
April 24, 2024	Featured Case Studies
May 8, 2024	Climate Disclosure for Homebuilders (Public)
May 29, 2024	How to Measure Embodied Carbon: BEAM training
June 5, 2024	ABC Collective Manufacturers Showcase
June 10, 2024	Valley of the Sun Deconstruction & Reuse Panel (Public)
June 19, 2024	How to Benchmark for Embodied Carbon
July 3, 2024	Embodied Carbon Market Incentives
August 7, 2024	All About Concrete
September 4, 2024	Materials Showcase (Public)
October 1, 2024	HomebuildersCAN Summit at EEBA (In-Person)
October 16, 2024	The RESNET/ANSI 1550 Standard (Public)
November 6, 2024	Embodied Carbon in Energy Efficiency Programs
December 4, 2024	Featured Case Studies (Public)
December 11, 2024	Making Commitments: First Cohort of Commitment Program

HomebuildersCAN Resources

Early supporters of HomebuildersCAN

Airtightness Study

Efficiency & embodied carbon: NOT in opposition

Win-Win scenarios address both issues

Improvements in energy efficiency and operational emissions Improvements in embodied carbon performance

Airtightness Improvements: A Win-Win Solution

Airtight construction is an effective strategy for both **improved energy efficiency** with relatively **low embodied carbon impacts.**

DOE Study: Building Model Overview

Key Specifications:

- 2-story single-family home
- Gross floor area: 2,376 sq-ft
- 8 windows (U-factor: 0.35, SHGC: 0.25)
- Gable roof
- Wood stud framing
- Gas furnace heating
- R20 wall cavity insulation
- R49 roof cavity insulation

DOE Energy Code Models: <u>https://www.energycodes.gov/prototype-building-models</u>#Residential

Report: Kunwar, Niraj, Shrestha, Som, Desjarlais, Andre Omer, Accawi, Gina, Ng, Lisa, and Dalgleish, Laverne. <u>Online Calculator to Evaluate the Impact of Airtightness on Residential</u> <u>Building Energy Consumption and Moisture Transfer</u>. United States: N. p., 2022. Web.

DOE Study: Energy Model Results

Climate Zone 3A (Dallas, TX)			
Air tightness	No air barrier (13 ACH50)	IECC min. (5 ACH50)	Passive House (0.6 ACH50)
Electricity (kWh)	4,164	3,906	3,763
		6.2% reduction from no barrier	3.7% reduction from IECC min.
Natural Gas (kBTu)	42,839	29,630	22,069
		31% reduction from no barrier	26% reduction from IECC min.

Note: % reductions shown are based on annual energy consumption, not operational carbon

DOE Study: Energy Model Results

Climate Zone 5B (Pittsfield, MA)			
Air tightness	No air barrier (13 ACH50)	IECC min. (5 ACH50)	Passive House (0.6 ACH50)
Electricity (kWh)	4,025	3,944	3,919
		2.0% reduction from no barrier	0.6% reduction from IECC min.
Natural Gas (kBTu)	66,077	48,037	37,178
		27% reduction from no barrier	23% reduction from IECC min.

Note: % reductions shown are based on annual energy consumption, not operational carbon

DOE Study: Cradle-to-Gate Embodied Emissions

Total Embodied Emissions: 32,171 kg CO2e

Emissions Intensity: 146 kg CO2e/m²

MATERIAL CARBON EMISSIONS BY SECTION			
Footings & Slabs	10,772 kg CO₂e		
Foundation Walls	0 kg CO₂e		
Structural Elements	0 kg CO₂e		
Exterior Walls	1,581 kg CO₂e		
Party Walls	0 kg CO₂e		
Exterior Wall Cladding	9,328 kg CO ₂ e		
Windows	2,844 kg CO₂e		
Interior Walls	1,274 kg CO ₂ e		
Floors	3,624 kg CO₂e		
Ceilings	269 kg CO ₂ e		
Roof	2,477 kg CO ₂ e		
Garage	0 kg CO₂e		

Assuming typical construction materials, like industry average concrete, fiberglass batt cavity insulation, brick cladding, double-glazed windows, carpet, light wood l-joist floor framing, and asphalt roof shingles.

DOE Study: EC Impact of Interventions

DOE Study: EC Impact of Interventions

Tighter construction:

+~0% of cradle-to-gate EC

Negligible additional material Primarily onsite installation interventions

HERS Models: Summary of Models

6 energy models of homes in Massachusetts (Climate Zone 5)

Model	Area (sq-ft)	Typology	HERS Score	Embodied Carbon*	Operational Carbon
01	1,003	Apartment	43	130 kgCO2/m²	Heating: 0.41 tons/yr Cooling: 0.0 tons/yr
02	1,156	Single family	-28	358 kgCO2/m²	Heating: 0.42 tons/yr Cooling: 0.0 tons/yr
03	2,017	Single family	48	222 kgCO2/m²	Heating: 2.41 tons/yr Cooling: 0.10 tons/yr
04	1,508	Single family	48	403 kgCO2/m ²	Heating: 2.81 tons/yr Cooling: 0.03 tons/yr
05	1,000	Single family	45	207 kgCO2/m²	Heating: 0.52 tons/yr Cooling: 0.0 tons/yr
06	710	Townhouse	53	214 kgCO2/m²	Heating: 0.70 tons/yr Cooling: 0.01 tons/yr

* Results are from BEAM estimator tool from Builders for Climate Action

HERS Models: Operational Carbon Scenario Modelling

Keeping the climate variables constant and varying the airtightness performance from 5 ACH to Passive House (0.6 ACH), notable savings in Annual Heating Operational Carbon are observed.

IECC code min. for Climate Zones 1 and 2 IECC code min. for Climate Zones 3 thru 8 5ACH to 3ACH 130/6

> Avg. % Reduction in Annual Operational Carbon (6%-22%)

5ACH to 1ACH

Avg. % Reduction in Annual Operational Carbon (10%-43%) 5ACH to PH (0.6ACH)

2/%

Avg. % Reduction in Annual Operational Carbon (10%-47%)

A special thank you to **Andy Buccino** (Stephens & Company, Inc.), **Patrick Nachlas** (Ekotrope), and **Jacob Bodah** (Energy Code Help) for their analysis support and expertise!

HERS Models: Operational Savings Compared

Embodied Carbon Impact	Negligible.	Negligible.	+2-8% in A1-A3 Embodied Carbon	+6-30% in A1-A3 Embodied Carbon
% Reduction in Annual Operational Carbon	13%	25%	~10%	~8%
Strategy	More airtight construction (5ACH to 3ACH)	Much more airtight construction (5ACH to 1ACH)	Upgrade from double- to triple- paned windows	Doubling exterior wall insulation thickness
	Contraction of the second			<u>NNNNNN</u>

Summary: A Win-Win for Embodied & Operational Carbon

Improving air tightness is the best improvement in operating emissions for the least increase in embodied emissions ADDED AIR BARRIER (13ACH to 5ACH)

+31%

Building energy performance improvement

+2%

Added embodied carbon

TIGHTER CONSTRUCTION (5ACH to 0.6ACH)

+27%

Building energy performance improvement

+0%

Added embodied carbon

Panel Discussion

CHRIS MAGWOOD

> RMI, Manager

TRACY HUYNH

RMI, Senior Associate PAULA MELTON

BuildingGreen, Editorial Director BEVERLY CRAIG

MassCEC, Program Director

ERIC WERLING

Owner, Home Innovation Strategies

ANDREW GUIDO

Empire Communities, VP Sustainability & Innovation

Thank You

The recording will be available on the **event page** within 24 hours.

Sign up as a member or subscribe:

rmi.org/HomebuildersCAN

HomebuildersCAN CARBON ACTION NETWORK

CHRIS MAGWOOD

RMI Manager <u>cmagwood@rmi.org</u>

TRACY HUYNH

RMI Senior Associate <u>thuynh@rmi.org</u>