

Post-IRA Economics of Home and Vehicle Decarbonization: How the Greenhouse Gas Reduction Fund Can Fill the Financing Gap

March 5, 2024 2:00 P.M. ET

RMI thanks JP Morgan Chase for the funding that enables this event

Agenda

Greenhouse Gas Reduction Fund Overview

Green Upgrade Calculator

Residential Solar PV

Single Family Home Electrification

- Personal Electric Vehicle
- Closing Remarks from JCF

GGRF is the single largest IRA investment in low income and disadvantaged communities

National Clean Investment Fund (NCIF)

\$14B Fund for Direct Investment in Qualified Projects

EPA will grant:	Funding will serve:	Funding Uses:	Possible Financial Products:	Project Examples:
 2-3 national nonprofit hubs to create national clean financing institutions 	 At least 40% low income and disadvantaged communities 	 Direct investment in qualified projects (financial assistance) Predevelopment & market-building activities 	 Debt Equity Hybrids Credit enhancements 	 Rooftop solar, solar-plus- storage, fuel cells Building retrofits and electrification New construction of net-zero buildings EV charging infrastructure Transit-oriented development

Clean Communities Investment Accelerator (CCIA) \$6B Community-Focused Fund

EPA will grant:	Funding will serve:	Funding Uses:	Possible Financial Products:	Project Examples:
• 2-7 hub non- profits	 100% low income and disadvantaged communities 	 Provide funding and technical assistance to a national network of community lenders to finance priority, qualified clean energy projects 	 Grantees pass- through 80-90% of awards to community lenders as subsidies or subgrants 	• Same as NCIF

EPA will grant:	Funding will serve:	Funding Uses:	Possible Financial Support:	Project Examples:
 Up to 60 states, Tribal and municipal governments, and eligible non-profit entities 	 100% low income and disadvantaged communities 	 Expand existing or create new low-income solar programs Fund new workforce training programs Technical assistance for project deployment 	 Subsidies, rebates, and subsidies Debt Equity Hybrids Credit enhancements 	 Residential serving community solar Rooftop solar paired with heat pump and EE

Agenda

Closing Remarks from JCF

Sneak preview of the Green Upgrade Calculator: A free, sophisticated online tool for energy professionals to assess the economic and climate impacts of residential upgrades

Individual Home Analyses

Financial Institutions can project lifetime cost impacts of different financing terms on various upgrades

Contractors can modify system design specifications and project bill impacts for customers

Home Advisors can compare the lifetime cost and climate impacts of different quotes for homeowners

Regional Analyses

Policy advisors can analyze impacts of a proposed policy on residents

Energy analysts can map the cost and climate impacts of different upgrades, as done for this presentation!

Agenda

Residential Solar PV

Single Family Home Electrification

Personal Electric Vehicle

Closing Remarks from JCF

Residential solar currently has an over \$18B market size and could double by 2030

Residential solar installations and forecast, 2020-2028

Source: Wood Mackenzie

Rooftop solar upfront costs are highly dependent on the system size, market maturity, and tax liability

Residential Rooftop Solar					
	Typical	Typical Range	Depending on		
Size	7 kW	4-10 k₩	roof size, home electric usage, NEM		
Relative Upfront Cost	\$2.85/Watt	\$2.40/Watt-\$3.50/Watt	system size, market, contractor		
Upfront Cost	\$20,000	\$15,000-\$25,000			
Federal Tax Credit	\$6,000 (30%)	\$0-\$7,500	tax liability and upfront cost		
Upfront Cost Post Incentives	\$14,000	\$10,000-\$25,000			

The IRA made residential and commercial ITC very different incentives

Rooftop solar operating savings are highly dependent on system size, solar resource, electricity rates, and policy

Source: RMI Green Upgrade Calculator

RMI – Energy. Transformed.

Model assumptions: See all assumptions at greenup.rmi.org. Analysis assumptions: Applied model results for individual homes to each state's single-family home building inventory

Rooftop solar payback is highly dependent on market prices, 25C tax credit, and operating savings

Rooftop Solar Payback (Years) with 25C 42 states have payback less than 15 years.

Source: RMI Green Upgrade Calculator

RMI – Energy. Transformed.

Model assumptions: See all assumptions at greenup.rmi.org. Analysis assumptions: Applied model results for individual homes to each state's single-family home building inventory

Rooftop Solar Payback (Years) without 25C

30 states have payback less than 15 years.

14

Low-income communities have not proportionally benefited from solar

High upfront costs

• Upfront costs can be even higher when enabling upgrades are needed, such as roof repairs or electric panel upgrades.

Variable income stream

• Solar energy production varies month to month resulting in an uneven income stream

Tax credit monetization challenges.

US Households cannot receive the *full* solar ITC benefit

RMI – Energy. Transformed.

Direct pay offers a new mechanism for nonprofit financial institutions to accelerate low-income solar adoption

Agenda

Residential Solar PV

- Personal Electric Vehicle
- Closing Remarks from JCF

Residential heat pumps has a market size of \sim \$10B and could grow 6-fold by 2030 to be climate aligned

RMI – Energy. Transformed.

Home electrification upfront costs are highly dependent on climate zone, market maturity, federal incentives, system size, and existing ducting

	Air-Source Heat Pump		Heat Pump Water Heater			
	Typical	Typical Range	Depends on	Typical	Typical Range	Depends on
Upfront Cost	\$18,000	\$12,000-\$25,000	Climate, ASHP size, market maturity, existing ducts	\$5,000	\$3,000-\$6,000	Tank size, market maturity, existing electrical
Federal Tax Credit	\$2,000	\$0-2,000	Tax liability, specs	\$975	\$0-\$1,800	Tax liability, specs
Federal Rebates	\$8,000	\$0- \$8,000	Upfront cost, income, specs	\$1,750	\$0- \$1,750	Upfront cost, income, specs
Upfront Cost Post Incentives	\$8,000	\$4,000-\$20,000	Incentive qualifications	\$2,275	\$1,000- \$3,500	Incentive qualifications
Net Upfront Cost vs. Traditional Replacement	\$0 premium	\$6,000 cheaper - \$10,000 premium	All the above plus traditional replacement details	\$1,000 cheaper	\$2,000 cheaper - \$1,000 premium	All the above plus traditional replacement details

IRA creates new rebates, which is important since the tax credits are not refundable

Home Electrification and Appliance Rebates Program (\$4.5B)

- Providing point-of-sale discount to consumers for certain high-efficiency electric appliances and energy efficiency products
- Available for households whose income is below 150% of the area median
- 100% of project cost for low income up to \$8,000 for heat pump
 RMI – Energy. Transformed.

Home Efficiency Rebates Program (\$4.3B)

- Providing savings-based incentives for whole-home efficiency upgrades/retrofit
- Rebates double for low income households
- Rebate up to \$8,000 per unit for 35%+ energy savings in low income households

Energy Efficient Home Improvement Credit (25C)

- Providing non-refundable tax credit for appliances
- 30% of project cost up to \$2,000 for heat pumps and hot water heat pumps
- Only eligible for owner occupied homes

Understanding how federal and local incentives stack and the process for stacking can help inform financing

Example: Cold Climate ASHP installation in Colorado

Final Cost

<u>Upfront Cost (Before Incentives) = \$20,900</u>

RMI – Energy. Transformed.

Home electrification operating savings are highly dependent on existing fuel source and climate zone

• The average annual net operating savings operating an air-source heat pump, heat pump water heater, and induction versus the like-for-like replacement system is:

Delivered Fuel Retrofit Savings

Electric Resistance Retrofit Savings

Natural Gas Retrofit Savings

Model assumptions: See all assumptions at greenup.rmi.org.

Analysis assumptions: Applied model results for individual homes to each state's single-family home building inventory

Home electrification payback is highly dependent on climate zone, federal incentives, and existing fuel source

• The average net payback operating an air-source heat pump, heat pump water heater, and induction versus the like-for-like replacement system <u>with</u> the federal Home Energy Rebate programs is:

Natural Gas Retrofit Payback 32 states have payback <15 years

Delivered Fuel Retrofit Payback

49 states have payback <15 years

Electric Resistance Retrofit Payback

All states have payback <15 years

Model assumptions: See all assumptions at greenup.rmi.org. Analysis assumptions: Applied model results for individual homes to each state's single-family home building inventory

Home electrification payback is highly dependent on climate zone, federal incentives, and existing fuel source

• The average net payback operating an air-source heat pump, heat pump water heater, and induction versus the like-for-like replacement system <u>without</u> the federal Home Energy Rebate programs is:

Natural Gas Retrofit Payback 19 states have payback <15 years

Delivered Fuel Retrofit Payback

45 states have payback <15 years

Electric Resistance Retrofit Payback

All states have payback <15 years

Model assumptions: See all assumptions at greenup.rmi.org. Analysis assumptions: Applied model results for individual homes to each state's single-family home building inventory

There are financial barriers preventing beneficial electrification projects

GGRF new financial offerings can help

Creating preferential financing options that combine the below principles will help electrification customers overcome barriers and scale adoption.

No upfront costs and low or no interest

- Overcome first cost barrier and minimize overall payback expense
- Combine with flexible, long-term payback periods

Simple application with instant approval

- Avoid requiring complicated steps
- Align timing of financing with urgency of equipment replacement

Offered by the contractor

- Customer doesn't have to seek financing on their own
- Give contractors an incentive to participate

	T	
	-	
1 =		
-		- 1

Payments are on-bill (if possible)

- Simplified repayment via trusted entity
- Expanded customer eligibility
- May be structured in variety of ways

Strong consumer protections

- Transparency around bill impacts
- Protection against service shutoffs (for on-bill)
- Avoid predatory marketing

Agenda

Residential Solar PV

Personal Electric Vehicle

Closing Remarks from JCF

With EV's on an S-curve, the market size in 2030 is projected to grow to \$350B (up from \$41B in 2022)

Looking back

Quarterly U.S. Battery Electric and Plug-in Hybrid Vehicle Sales Thousand vehicles

Electric vehicle upfront costs are highly dependent on eligibility for federal incentives

New Electric Vehicle					
	Typical	Typical Range	Depending on		
Upfront Cost	\$45,000	\$27,000-\$100,000+	Battery range (miles), AWD capability, Vehicle type		
Federal Tax Credit	\$3,750	\$3,750, or \$7,500	Vehicle MSRP; Household income; Location of manufacturing and critical minerals		
Upfront Cost Post Incentives	\$41,250	\$27,000-\$100,000+	Incentive qualifications		
Net Upfront Cost vs. Gas Vehicle	\$5,000 premium	\$0-\$20,000 premium	All the above plus the comparable gasoline vehicle		

IRA updated existing EV tax credits and expanded new credits to existing and commercial vehicles

Clean Vehicle Credit (30D)

- Existing tax credit for new clean vehicles through 2032
- Up to \$7,500 per vehicle. The credit is divided in two \$3,750 half credits for a 1) critical mineral requirement and 2) battery component requirement
- Transferable to the dealer

BEFORE

Over 70% of Americans were unable to use the credit due to a lack of tax appetite ²

AFTER

IRA transforms into point-of-sale rebate ³

Credit for Previously-Owned Clean Vehicles (25E)

- New tax credit for pre-owned clean vehicles through 2032
- Credit is the lesser of \$4,000 or 30% of the sale price
- Transferable to the dealer
- No critical mineral, battery, or domestic content requirements

AFTER

\$

IRA creates new credit

for affordable used EVs

BEFORE

Over 70% of Americans

Previously there wasn't

a credit for used EVs

buy used vehicles.

Qualified Commercial Clean Vehicles (45W)

- New tax credit for light, medium, and heavy-duty EVs purchased for commercial use or lease
- 30% of cost for light duty vehicles up to \$7,500
- Direct Pay option for tax-exempt entities
- No critical mineral, battery, or domestic content requirements
- Can be used by individuals through leasing EVs

Alternative Fuel Vehicle Refueling Property Credit (30C)

- Tax credit for EV chargers for individuals or businesses
- 30% of cost for individuals up to \$1,000
- Must be located in low-income or rural area

Electric vehicle operating savings are highly dependent on miles traveled, electricity rates, and vehicle efficiency

\$500 \$1,000 \$1,500 \$2,000 \$2,500

Electric Vehicle Annual Operating Savings

Source: RMI Green Upgrade Calculator

RMI – Energy. Transformed.

Model assumptions: See all assumptions at greenup.rmi.org. **Analysis assumptions:** Average hatchback vehicle

Electric vehicle payback is highly dependent on upfront cost and operating savings

Source: RMI Green Upgrade Calculator

EV Payback (Years) without federal tax credit

36 states have payback <5 years

RMI – Energy. Transformed.

Model assumptions: See all assumptions at greenup.rmi.org. **Analysis assumptions:** Average hatchback vehicle

There are financial barriers preventing clean transportation projects

High upfront costs

• High purchase costs for personal EVs poses a barrier to low-income individuals already struggling to afford personal vehicles. Car alternatives like e-bikes and e-scooters also come at a premium.

Costs beyond vehicles required

• Added costs for charging infrastructure in homes places personal EVs out of reach. Homes requiring electric panel upgrades face additional costs.

Public changing less available

• Public chargers are only profitable where people drive EVs, and EVs only make sense where there are chargers. Long payback periods for EV infrastructure could help here.

GGRF new financial offerings could help

Low-cost and flexible financing for personal EVs that build-in charger costs

• Building in charger costs can help where charging infrastructure is otherwise an additional cost.

Factor in total cost of ownership in evaluation of projects

• Often operating expenses are lower for EVs than ICE meaning households have more monthly income available.

Financing products and programs catered to "small" purchases

• (\$1,000-5,000) for personal mobility purchases/ car alternatives

Agenda

Residential Solar PV

Closing Remarks from JCF

Thank You!

Use QR for link to recording and slides

