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Supplemental Material 
 
1. Additive version of Fig. 1, comparing synthetic with IEA energy intensities, 
and showing how rapid renewables growth helped offset slower recent savings 
 
Fig. 1 shows the “spread” between upwards improvement in decarbonized supply 
and downwards improvement in energy intensity, so as to leave room to graph their 
respective regressions. Other purposes may instead merit the following additive 
graph, using the reciprocal (inverse) of energy intensity, i e energy productivity, so 
improvement in both variables is consistently upwards. This version also shows IEA 
primary energy intensity (dotted purple line) for comparison with synthetic 
intensity (purple line); their regressions are compared in Fig. 1 and its caption.  
 
IEA’s energy intensity drops slowed markedly in 2015–18 (Fig. 2), averaging 
1.7%/y and dipping in 2018 to 1.2–1.3%/y (cf Fig. 2’s caption)—still greater than 
the 1981–2010 average. The synthetic energy intensity drops (SM Part 1 n12–13) 
conservatively used in Fig. 1’s regressions averaged 0.84%/y in 2015–18 and 
0.13%/y in 2018—half IEA’s average pace and with better statistical fit (Fig. 1’s 
caption). Yet the savings slowdown was moderated, and in 2016 and 2018 was 
slightly more than offset, by decarbonized supply growth (Fig. 3), which in 2015–18 
averaged 4.66%/y absolute or 2.56%/y in TFEC share—3 as important as 
decreased energy intensity. Both variables matter. During and despite the 2015–18 
savings slowdown, their sum sustained since ~2010 the most impressive decarboni-
zation in three decades, as shown by the heavy black line in the following graph: 
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The rapid progress in the first half of the 1980s resulted from surges in early 
renewable supply (Fig. 3b) and global energy productivity in the wake of the 1979 
oil-price shock, plus completion of major nuclear-power additions (Fig. 3b) ordered 
after the milder 1973 oil-price shock and before the pre-Three Mile Island market-
driven collapse of US orders. Subsequent nuclear developments disappointed (Fig. 
3b and Schneider et al (2018, 2019)); global and national nuclear installation rates 
were later outstripped by renewables (Lovins 2018b, Schneider et al 2019). 
Renewables’ recent absolute additions (Fig. 3b) are larger than either version of Fig. 
1 shows as changes in share of [rising] total final energy consumption, so the larger 
aqua and black values on the left than on the right of Fig. 1 and its additive variant 
do not indicate larger absolute additions; those can be viewed directly in Fig. 3ab. 
 
 
 
2. Nearly all IAMs have been inadequately modeling energy efficiency 
 
Even in IAM modeling studies that encompass low-energy demand scenarios, 
energy efficiency measures are generally much less characterized (Kriegler et al 
2018). Those historic limitations, however, offer rich opportunities to narrow and 
even eliminate the “reality gap” by improving analysis faster than technical efficien-
cy potential grows. A special issue of the journal Energy Efficiency is specifically 
devoted to this need (Mundaca et al 2018). 
 
A few recently published IAM scenarios represent a step-change in closing this gap, 
and the results already reveal major implications for the realism and attainability of 
ambitious climate targets. These new state-of-the-art IAM scenarios confirm that 
falling energy intensity is not only a critical enabling condition for meeting stringent 
mitigation goals (Clarke et al 2014, Riahi et al 2015, Rogelj et al 2015, Kriegler et al 
2018); it is the most important variable. For instance, in comparing the Shared 
Socioeconomic Pathway scenarios SSP1 and SSP2, Marangoni et al (2017) showed 
that declining energy intensity is about twice as important as the runner-up, eco-
nomic growth. Riahi et al (2017) found that seemingly modest differences in fore-
cast energy intensity reduction therefore cause most of the 2–3-fold spread in 2100 
energy demand among the SS1–SS5 scenarios. The modeling community broadly 
agrees (e g Kriegler et al 2014, EMF27 2011) with conclusions like AR5’s (IPCC 
2014, pp 136–137) that reducing energy intensity can halve the gross mitigation 
costs of achieving nominal 450 or 550 ppmCO2eq by 2100. And efficiency doesn’t 
only displace costlier supply-side mitigations on the long-run margin; it also saves 
short-run operating costs because efficiency nearly always costs less than fuel, and 
it may cut energy-using systems’ capital costs too.  
 
Yet until about the past decade, when certain modeling groups’ attention to 
demand-side opportunities started to rise (e g Riahi et al 2017, Grübler et al 2018), 
most IAMs treated decarbonization in detail but energy efficiencyi sparsely, shaping 
the persistent misperception that effective mitigation is costly and nearly 
impossible.  Even in 2014, “Many IAMs [still had]…only one equation each for 
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representing energy use in the residential building, commercial building, industrial, 
and transportation sectors…[and are] very simplistic in their treatments of 
technological change” (Rosen & Guenther 2015). Similarly, some models like 
AIM/GCE (see §2.2 in Fujimori et al 2016) appear still to use the Autonomous 
Energy Efficiency Improvement approach criticized in literature cited by Gillingham 
et al (2008). Some still-cited models compared by Barker (2006) did “not even allow 
for…increased…energy efficiency in the mitigation scenarios…except implicit 
changes due to energy price elasticity….”  
 
Laudable recent efforts by some IAM groups to model energy efficiency are still far 
less granular than longstanding and extremely complex modeling of the less-impor-
tant competition between energy supplies, such as detailed global supply curves for 
each fuel (Fricko et al 2017). Even the best efficiency analyses do not yet approach 
the detail and modernity common in the separate, large, and refined engineering-
based literature on energy efficiency’s empirical cost, performance, and prospects—
regional, national, globalii. Most IAM teams make only limited use of that literature, 
so the causal factor most critical to model behavior rests on the sketchiest founda-
tions. Although AR5 Working Group III, in Chapters 9–11, assembled strong data on 
the empirical cost and performance of energy efficiencyiii, that’s scantily reflected in 
the sections of the report describing pathways (Chapter 6)—almost as if the two 
communities didn’t converse.  
 
Many IAMs, peering through a largely or wholly economic lens, still rely on indirect 
econometric representations of energy efficiency—like carbon pricing, often with 
far more effect on supply than on efficient use—as if inability to respond readily to 
price were not often more important than price itself (a reality that efficiency 
practitioners combat daily). Yet despite obeisance to economic theory, IAMs rarely if 
ever compete efficiency against energy supply as most actual economies do dailyiv: 
supply is typically bought to meet projected demand, competing with other supply 
but not directly with even-more-efficient use. Nor can historic price elasticities, 
energy-system structures, operating rules, and business models foresee the 
disruptive technical and market discontinuities that dominate today’s energy 
transformation and threaten to strand much of the existing asset base. Disquieting 
results of these deficiencies include: 
 

• Some standard models predict energy demand will hold steady (e g Güneralp 
et al 2017) or grow even where it’s shrinking, as in Europe.  

• A highly influential IAM’s 450-ppm scenario saves scarcely more energy in 
buildings than the baseline scenario, while the IAM’s most ambitious 
scenario is higher in 2050 than a bottom-up model’s baseline case (id)—an 
astounding discrepancy indicating an analytic framework misaligned with 
engineering reality. 

• Many measure-by-measure efficiency analyses assume efficiency will add 
cost, even though IEA (2008 Fig. 2.14) found at least the first ~13 GTCO2/y 
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had negative marginal cost, and Lovins (2018) marshalled empirical 
evidence that integrative design can achieve this in all sectors.  

• Not analyzing end-use efficiency opportunities by sector, end-use, and device 
yields significantly higher energy use in, say, buildings than bottom-up 
studies do (Dhar et al 2016 Fig 5.1; Lucon, Ürge-Vorsatz et al 2014 Figs. 9.20 
and 9.21). Indeed, IAMs often find little or no potential for improved 
efficiency (e g the BAU vs. “advanced efficiency” cumulative heating and 
cooling energy 2010–50 in Güneralp et al 2017), while physically explicit, 
empirically grounded, bottom-up studies find demand reductions of around 
one-third despite greatly improved services delivered to more than doubled 
floorspace (Güneralp et al 2016 Fig. 3, Lucon, Ürge-Vorsatz et al 2014 Fig. 2).  

 
The 2014 Working Group III report’s Buildings chapter reinforces this last point by 
plotting bottom-up and top-down models in the same Fig. 9.20 (Lucon, Ürge-Vorsatz 
et al 2014). The top-down models are more widely used. Yet strikingly illustrating 
the difference, deep-savings bottom-up scenarios, at least for buildings, find lower 
total investment costs and greater lifecycle savings than moderate-efficiency scenar-
ios in several important regions, and materially larger in only one region (Ürge-
Vorsatz et al 2015, Fig. 1). This is consistent with the microeconomic “tunneling 
through the cost barrier” typically found with integrative design, and with the 
German government’s conclusions that deep retrofits and passive newbuilds will 
yield far lower energy use and lifecycle cost for Germany’s building stock than 
incremental improvements (Umweltbundesamt 2017). IPCC AR5 Working Group III, 
too, confirms (Lucon, Ürge-Vorsatz et al 2014 pp 702–704) that deep retrofits can 
have lower lifecycle costs than shallow retrofits and that “very high performance 
new construction can be achieved at little, or occasionally even at negative, addition-
al [capital] costs.” Such bottom-up insights often reflect integrative design (Lovins 
2018) which, being invisible to top-down models, could invalidate the finding (van 
Vuuren et al 2009) that the two approaches, despite large sectoral divergences, tend 
to yield similar aggregate savings. 
 
In standard models’ defense, it is complicated and challenging to model integrative 
design, human behavior, and societal value shifts. The resulting preference for 
analytic simplicity and for fewer, larger individual projects mirrors institutional 
investors’ preferences.  Energy supply is familiar, comes in tractably large and slow-
to-build chunks, has relatively transparent and easily measured transactions and 
prices, is sensitive to policies, and (until this decade’s fracking and renewables 
revolutions) has deployed and evolved rather slowly. In contrast, energy efficiency 
is less well-known, highly granular and situational, very diverse (thorough analyses 
can include thousands of technologies), often opaque and challenging to measure 
rigorously, complex in policy and behavioral interactions, irregular in deployment 
pace, and often presumed to innovate slowly. Industry has particularly complex and 
shifting mixes of processes, feedstocks, products, and by- or coproducts, so at late 
2016, “hardly any study has looked into the industrial end-use sector” (Edelenbosch 
et al 2017). However, the widespread belief that industrial process heat (like heavy 
transport —cf Lovins 2015, Lovins & RMI 2011) is very hard and costly to decarbon-
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ize (e g Shell 2018 p 15, ETC 2018) will probably prove wrong once analysts pay 
proper attention to widening system boundaries on the demand side. These sectors 
represent the next great analytic, policy, and practice frontier. 
_________________ 
i. Shifting composition of economic output can also cut energy intensity but, like 
technical energy efficiency, is traditionally modeled more econometrically than 
physically. 
ii. Some basic references are in Lovins (2018). IEA’s early global efficiency supply 
curves (IEA 2008, 2015) are very conservative, showing 11% potential savings in 
2040 with average payback <2 y. Another important line of literature relies not on 
Best Available Technology and emerging ones but on benchmarking national 
process intensities (e g Worrell & Carreon 2017). 
iii. Regrettably, this evidence of measured cost and savings was reportedly 
published only at the plenary’s insistence and was not allowed to be distilled into 
“supply curves of the efficiency resource” (a practice common for decades among 
efficiency analysts), apparently due to some leaders’ fondness for empirically 
unsupportable large-rebound theories (see rebound discussion in our main paper) 
and personal belief that no significant cost-effective efficiency remains unbought. If 
compelling empirical evidence of efficiency’s potential cannot be fully presented by 
the Working Group charged with assessing it, the IPCC’s process and balance on this 
topic need deep reform. One test of reforms’ success could be whether AR6 properly 
considers modern all-sectors integrative-design evidence such as Lovins (2018) 
compiled. 
iv. Analogously, few IAMs model economic dispatch (Rosen & Guenther 2015), so 
each coal-fired power plant, once built, is often assumed to produce its rated output 
for its rated lifetime, rather than being run ever less as it’s outcompeted by 
renewables. That merit-order shift has cut Chinese thermal (nearly all coal) plants’ 
average capacity factor by 16.6 percentage points during 2013–16, regaining 4.6 
points during 2016–18 (China Electricity Council 2019), but formal adoption of 
economic dispatch, for impressive benefits (IEA 2019a, Lin & Wetzel 2019), is likely 
to send it much lower. This analytic gap substantially overstates coal plants’ future 
CO2 and other emissions; yet even a new review (Edenhofer et al 2018) assumes 
coal plants “will emit at a constant rate over their entire life-time,” and its proposed 
mitigation options don’t mention economic dispatch, which China is in fact moving 
to adopt.  However, the latest version of the MESSAGE model (Huppmann et al 
2019) does model both baseload and flexible operation of thermal power stations, 
and can therefore reflect their merit-order displacement by variable renewables 
(Johnson et al 2016). Other IAMs would benefit from this feature. 
 
 
 
 
3. Key features and pathways of 1.5C˚ pathways 
 
Table 1: Key global features of mitigation pathways (MP) that limit global warming to 1.5 C˚. Based 
on Grübler et al. (2018), Riahi et al. (2017) and Rogelj et al. (2018), these pathways’ narratives can be 
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described thus: MP1: Multiple innovations across diverse systems generate lower energy demand 
while living standards rise. In turn, meeting growing energy service demands with lower energy use 
allows rapid decarbonization of energy supply with far less investment. Reliance on carbon dioxide 
removal (CDR) options is minimized and only afforestation is needed. MP2: Focusing on a 
sustainability path and encompassing low challenges to mitigation, this scenario emphasizes inter 
alia human development and well-being, economic convergence, equality, consumption towards low 
material growth, lower energy intensity, educational investments, effective international 
collaboration, and respect for environmental boundaries. Land systems are effectively managed and 
social acceptability for CDR options is limited. MP3: With medium challenges to mitigation, socio-
technical systems follow historical (incremental) patterns. Economic growth and human 
development continue to improve but unfold unequally with slow advancement towards sustainable 
development goals. Decarbonization is primarily achieved by altering how energy is produced and 
products are manufactured. Reduced demand also moderately mitigates emissions. MP4: With high 
challenges to mitigation. economic growth and globalization generate widespread adoption of 
carbon-intensive lifestyles, with high demand for livestock products and transportation fuels. 
Decarbonization is mainly achieved through supply-side technologies, with marked use of CDR.  
 
Beneath the “Projected temperature overshoot line,” average compound rates of change are 
calculated by dividing the natural logarithm of the ratio of primary intensity or fossil-fuel primary 
supply share (modeled final-energy shares are unavailable) by 20 or 40 years respectively; actual 
trajectories will not follow those idealized patterns. Please see 2005–2100 model data in the 
accompanying spreadsheet iamc15_energy_carbon_data_ALL_MP_v2.xlsx, “data” tab from 
https://data.ene.iiasa.ac.at/iamc-1.5c-explorer.  
Data sources: Grübler et al (2018), Huppmann et al (2018), Rogelj et al (2018). 
 

     

Selected global indicators 
MP1 'Low energy 

demand' 
MP2 

'Sustainability' 

MP3 
'Middle-
of-the-
road' 

MP4 'Resource  
and energy-intensive' 

Final energy demand in 2030 (EJ/yr) 309 325 424 494 
Final energy demand in 2030 (relative 
to 2010) –15% –5% 17% 39% 

Final energy demand in 2050 (EJ/yr) 245 349 438 512 
Final energy demand in 2050 (relative 
to 2010) –32% 2% 21% 44% 
Primary energy intensity in 2030 
(EJ/million US$2010) 2.38 2.6 3.28 3.56 
Primary energy intensity in 2030 
(relative to 2010) –64% –61% –51% –47% 
Final energy intensity in 2030 
(EJ/million US$2010) 1.95 2.01 2.73 2.76 
Final energy intensity in 2030 (relative 
to 2010) –60% –58% –44% –43% 
Primary energy intensity in 2050 
(EJ/million US$2010) 1.13 1.46 2.24 1.92 
Primary energy intensity in 2050 
(relative to 2010) –83% –78% –67% –72% 
Final energy intensity in 2050 
(EJ/million US$2010) 0.96 1.15 1.78 1.37 
Final energy intensity in 2050 (relative 
to 2010) –80% –76% –63% –71% 
Renewable energy share in 2030 
(relative to 2010) 60% 58% 48% 25% 
Renewable energy share in 2050 
(relative to 2010) 77% 81% 63% 70% 
CO2 emissions in 2030 (relative to 
2010) –58% –47% –41% 4% 
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4. Supporting model-data spreadsheet 
 
For the data behind Table 1, please see the accompanying spreadsheet 
ERL_LovinsEtAl_database _v5_28Nov2019.xlsx, sourced in its README tab. 
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CO2 emissions in 2050 (relative to 
2010) –93% –95% –91% –97% 

Fossil-free primary  energy in 2030 42% 34% 33% 17% 

Fossil-free primary energy in 2050 81% 63% 64% 75% 
Land area of bioenergy crops in 2050 
(million hectares) 22 93 283 724 

Cumulative CCS until 2100 (GtCO2) 0 348 687 1218 

of which BECCS (GtCO2) 0 151 414 1191 

Projected temperature overshoot No or less than 0.1˚C No or <0.1˚C <0.1˚C >0.2˚C 
Av. compound %/y change in pri. en. 
intensity, 2010–30 –5.1 –4.7 –3.6                                                          –3.2 
Av. compound %/y change in pri. en. 
intensity, 2010–50 –4.4 –3.8 –2.8                                                          –3.2 
Av. compound %/y change in pri. en. 
fossil-free share, 2010–30 4.7 4.1 3.5                                                            0.1 
Av. compound %/y change in pri. en. 
fossil-free share, 2010–50 4.0 3.6 3.4                                                            3.8 
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