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Leveraging Smart Meter 
Data & Expanding Services
Increasingly, states are rolling out installations of smart meters for homes and busi-
nesses. These meters represent the first phase in the evolution to a smart grid that 
uses digital technology to improve electric delivery system reliability, flexibility, and 
efficiency. Installations of smart meters for natural gas are also on the rise. As the 
deployment of smart meters grows, energy service providers will have access to a 
much richer data set over a much larger population of buildings. 

Widely available interval data and recent advances in 

computing power are fostering the development of new 

technologies that streamline data collection and per-

form advanced analytics. The approach supports energy 

performance assessment by time of day. It underlies 

next generation measurement and verification (M&V) 

methods, which we refer to as advanced M&V. Advanced 

M&V has advantages over traditional regression-

based billing analysis, including more rapid feedback, 

improved savings resolution, and increased model 

accuracy due to many more data points. In addition, the 

same data and analytics can be applied to identify oper-

ational abnormalities, which can support fruitful, lon-

ger-term customer engagement. These developments 

provide an opportunity for energy service providers to 

leverage smart meter data and advanced M&V to inform 

and expand building efficiency projects and services. 

The application of advanced M&V methods is more 

complex than typical whole-building M&V methods 

using monthly billing data. Interval data M&V models 

include new forms of linear regression models that 

incorporate time indicator variables. In addition, as the 

time interval becomes smaller, the presence of autocor-

relation in the data increases, which impacts savings 

uncertainty and necessitates its assessment. Applying 

advanced M&V methods can have added benefit if oper-

ational improvement savings can be determined with 

sufficient accuracy to be discernible using whole build-

ing data. In this article, we investigate these consider-

ations through a case study. 

M&V Methods
In the late 1980s, the International Performance 

Measurement and Verification Protocol (IPMVP) 
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established an industry-accepted framework for M&V, 

which includes four options for determining verified 

savings. Performing M&V using whole-building data to 

develop empirical models aligns with an IPMVP Option 

C approach. Option C involves developing an M&V 

model from baseline period whole building energy use 

data and independent variables, then projecting the 

baseline energy use into the post-install period condi-

tions. Savings are determined by subtracting the mea-

sured post-installation period use from the adjusted 

baseline use.1 

In the 1990s, ASHRAE began developing Guideline 

14, Measurement of Energy, Demand, and Water Savings, to 

provide procedures for using measured data to verify 

savings.2 At the same time, ASHRAE initiated Research 

Project 1050 (RP 1050), which created the inverse model-

ing toolkit (IMT). The IMT includes change-point mod-

els, which are piece-wise linear regression models with 

each segment meeting at a common point.3 The IMT is 

commonly applied with Option C using monthly utility 

billing data and corresponding average monthly tem-

peratures or heating and cooling degree days. It provides 

a simple and powerful approach for understanding the 

weather dependence of building energy use, but without 

temporal considerations. 

Recent developments in interval data M&V model-

ing include new forms of linear regression models that 

incorporate time indicator variables. For example, the 

time-of-week and temperature (TOWT) model devel-

oped for demand response applications4 considers the 

time of the week as well as the ambient temperature 

as influences on energy use. The TOWT model cap-

tures the nonlinear relationship between outdoor air 

temperature and load by dividing temperatures into 

many intervals and then fitting a piecewise linear and 

continuous temperature dependence. This means that 

for one year of hourly data, the TOWT model would 

include 168 (hours in a week) linked regressions; each 

developed from at least 52 data points (8,760 hours in 

a year).

A challenge for Option C applications is ensuring 

that the anticipated project savings are “discernable.” 

Guideline 14 requires that savings be stated within 

±50% at the 68% confidence level to comply. Efficiency 

project stakeholders (owners, financiers, and service 

providers) would certainly desire more stringent cri-

teria. One way to ensure savings meet uncertainty 

criteria is to develop accurate energy models for use in 

the analysis. This is one area where the interval data 

approach is advantageous over the monthly billing data 

approach. 

Assessing Savings Uncertainty 
Since actual savings can only be estimated and not 

compared with a directly measured value, we discuss 

the quality of our savings estimations in terms of their 

uncertainty. Uncertainty is an expression of the prob-

ability or confidence with which an estimate is within 

specified limits of the true value. As will be shown, the 

accuracy with which we can model the baseline period 

energy use has a direct effect on the uncertainty of our 

savings estimate.

Monthly models are usually developed using ordinary 

least squares regressions and 12 data points. Savings 

must be large to be discernable above the “noise” (ran-

dom error of the regression model). For models devel-

oped from monthly data, this concern led to the rule-of-

thumb that savings must be at least 10% or 15% of annual 

energy use. 

Interval data converted to hourly or daily data pro-

vide orders of magnitude more data than monthly. As a 

general rule, the more data used to develop regression 

models, the more accurate the model. However, as the 

time interval becomes smaller, the presence of autocor-

relation in the data increases. This reduces the inde-

pendence of the data points and serves to increase the 

savings uncertainty, as discussed below.

Baseline model accuracy is assessed by metrics that 

quantify their random and bias error. The bias error 

shows how much the model under- or over-predicts 

the total actual energy consumed in the model train-

ing period, and should be zero, or extremely small. The 

random error indicates how well the model follows the 

usage patterns of the actual data; good models follow 

these patterns very closely. The metric most commonly 

used to quantify its random error is the root mean 

squared error (RMSE), or the coefficient of variation of 

the RMSE (CV[RMSE]), which is the RMSE divided by the 

average baseline energy use. 

ASHRAE Guideline 14-2014 provides a simplified 

approach to estimate savings uncertainty for two cases: 

1) weather-dependent linear models from data that 

are not serially correlated, and 2) weather-dependent 

linear models from data that are serially correlated. In 
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Equation 1 shows that the better the model goodness 

of fit (low MSE or CV(RMSE)), the more data points, and 

the higher the savings, the lower the savings uncertainty. 

The level of autocorrelation in the data (high r values, 

which lower the effective n) tends to increase as the time 

interval becomes smaller.

This simplified relationship provides a convenient 

way to assess an advanced M&V approach in the plan-

ning stages of efficiency projects. For example, project 

stakeholders can establish how accurately savings must 

be reported. Based on the criterion, baseline data can 

be collected, a baseline model developed, and Equation 

1 applied with assumptions made for savings and post-

installation measurement period. Stakeholders can 

decide if the resulting savings uncertainty is acceptable. 

If not, another M&V approach can be developed.

the case of serial correlation, Equation 1 shows shows 

the relationship between the relative uncertainty and 

CV(RMSE), fraction of savings F, number of baseline and 

post-installation period data points n and m respectively, 

number of model parameters p, and confidence level 

(specified by the t-statistic t with  confidence level). 

Equation 1 accounts for the presence of autocorrelation 

(also known as serial correlation) in the data through the 

term n´, which indicates the effective number of data 

points. For weather-dependent models without autocor-

relation, the same form of Equation 1 is used, but n´ is 

replaced by n. For example, monthly data are generally 

assumed to have no autocorrelation and n equals 12 for a 

one-year analysis. Guideline 14 provides details on how 

to determine , the autocorrelation coefficient.
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models for each site using monthly, daily, and hourly 

intervals for one year of data. We aimed to demonstrate a 

streamlined approach to evaluate the M&V model uncer-

tainty and verified savings across the portfolio. The selected 

form of the monthly model was a four-parameter (4p) 

change point linear regression since it provided the best 

data fit overall for the sites. Commercial software that 

applies the IMT algorithms was used to develop the regres-

sions. The selected daily and hourly data models were the 

LBNL TOWT4 regressions developed using the Universal 

Translator 3.0 (UT3)tool.5 We performed general quality 

assurance procedures but did not develop site-specific data 

filters to improve regression fit on a case-by-case basis. We 

determined the savings uncertainty for each model using 

Equation 1, assuming the same duration for the baseline 

and post-installation periods (m = n). 

Figure 1 presents normalized monthly energy use for 

each site over the calendar year. The sites are ordered 

from largest to smallest (dark to light lines). Floor areas 

range from 3,500,000 ft2 to 80,000 ft2 (325 161 m2 to 

7432 m2). The figure indicates magnitude, range, and 

seasonal variations across the data set. Many of the 

buildings use some electric heat and a few receive cool-

ing from a district chilled water loop, resulting in many 

of the buildings’ winter month electric use exceeding 

summer month electric use. 

Figure 2 shows the 4p regression plots developed using 
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FIGURE 1 � Monthly electricity consumption. 				    FIGURE 2 � Monthly 4P change point models.

This methodology is straightforward to apply; however, it 

was developed based on linear methods assuming normal 

distributions and independence of data. While the cor-

rection for autocorrelation helps, M&V models are being 

developed with complex algorithms that are nonlinear in 

nature. Advanced M&V algorithms include names such as 

vector machines, neural networks, and machine learning. 

Often these methods are proprietary. Methods for quantify-

ing savings uncertainty using these algorithms are more 

complicated and are an area of current research.

Example Case Study 
We applied the Guideline 14 methods to a portfolio 

subset that included whole-building interval data for 

17 large commercial buildings located in climate zone 

5a. Our client sought to understand the benefits of a 

streamlined advanced M&V approach applied across 

a large group of projects emphasizing operational 

improvements. The client wanted to know how precisely 

an Option C M&V model could determine savings prior 

to embarking on scaled implementation. Should the 

Option C approach not meet their accuracy require-

ments, they would explore a different M&V approach 

or consider a service-based business model instead of 

offering a performance guarantee. 

We investigated the improvements in accuracy realized 

from an advanced M&V approach by developing three 
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monthly data. They indicate the varying temperature 

dependence of electricity use for each site in the port-

folio. The slopes on either side of the change point are 

indicative of the relative cooling and heating system 

efficiencies of the modeled building. The change point 

indicates the building balance point temperature above 

or below which space conditioning begins. No attempt 

was made to graph and present the annual data for the 

interval data or more complex TOWT models. However, 

their “energy signatures” can provide more detailed 

insights by capturing load shape trends, which may be 

best assessed through automated statistical methods or 

machine learning techniques due to voluminous data 

processing.

The regression statistics and auto-correlation val-

ues determined for the three models for each site are 

presented in Table 1. In general, the regression models 

developed with more granular data have larger residu-

als relative to the predicted value as indicated by their 

TABLE 1 � M&V electricity models regression statistics and example results.

MONTHLY 4-P CHANGE POINT MODEL DAI LY TOWT MODEL HOURLY TOWT MODEL

R2 CV n r n´ U  
(90% CI)

R2 CV n r n´ U  
(90% CI)

R2 CV n r n´ U  
(90% CI)

Site 1 0.9 2% 12 0 12 1.7% 0.87 10% 365 0.35 177 1.6% 0.92 17% 8,782 0.87 588 1.4%

Site 2 0.96 4% 12 0 12 3.2% 0.92 9% 364 0.20 242 1.2% 0.84 19% 8,758 0.83 815 1.3%

Site 3 0.71 9% 12 0 12 6.8% 0.66 14% 352 0.71 59 3.9% 0.76 24% 8,471 0.95 233 3.3%

Site 4 0.87 7% 12 0 12 4.8% 0.74 20% 365 0.71 61 5.4% 0.78 33% 8,782 0.95 242 4.5%

Site 5 0.94 12% 12 0 12 8.5% 0.89 21% 364 0.13 278 2.6% 0.84 40% 8,603 0.77 1,104 2.5%

Site 6 0.99 5% 12 0 12 3.9% 0.94 15% 364 0.34 180 2.3% 0.85 24% 8,758 0.86 650 1.9%

Site 7 0.82 9% 11 0 11 7.4% 0.57 26% 364 0.71 61 7.0% 0.61 33% 8,758 0.91 395 3.4%

Site 8 0.94 11% 12 0 12 8.1% 0.81 22% 366 0.71 61 5.9% 0.77 28% 8,782 0.95 242 3.7%

Site 9 0.84 8% 12 0 12 6.0% 0.90 9% 365 0.17 258 1.2% 0.91 17% 8,782 0.81 918 1.2%

Site 10 0.98 6% 12 0 12 4.3% 0.92 16% 365 0.13 281 2.0% 0.80 32% 8,782 0.83 824 2.3%

Site 11 0.89 10% 12 0 12 6.9% 0.70 23% 365 0.28 205 3.3% 0.63 44% 8,782 0.78 1,065 2.8%

Site 12 0.97 4% 12 0 12 2.8% 0.89 10% 364 0.31 192 1.5% 0.78 21% 8,759 0.79 1,055 1.4%

Site 13 0.96 8% 12 0 12 5.7% 0.86 17% 356 0.11 287 2.1% 0.74 39% 8,567 0.77 1,114 2.4%

Site 14 0.81 20% 12 0 12 14.2% 0.59 31% 364 0.72 59 8.6% 0.61 42% 8,758 0.91 414 4.3%

Site 15 0.98 9% 12 0 12 6.2% 0.86 24% 364 0.31 192 3.7% 0.71 53% 8,758 0.82 860 3.7%

Site 16 0.98 9% 12 0 12 6.2% 0.74 19% 364 0.38 162 3.2% 0.71 33% 8,758 0.80 970 2.2%

Site 17 0.95 7% 12 0 12 5.0% 0.80 17% 364 0.19 247 2.3% 0.72 33% 8,758 0.83 811 2.4%

higher coefficient of variation (CV) and lower R-squared 

values. As indicated, the autocorrelation coefficient is 

zero for monthly data. For some sites, the level of auto-

correlation was determined to be significant for the 

daily and hourly utility data, which results in the effec-

tive number of independent data points being much less 

than the actual number of data points. The uncertainty 

values, reported for the 90% confidence interval, are rel-

ative to the baseline annual energy consumption (deter-

mined by multiplying both sides of Equation 1 by F, the 

savings fraction). We refer to these values as the baseline 

energy use uncertainty fraction.

A comparison between the different interval data 

model fit is presented in Figure 3 for two sites. The Site 4 

interval data models provided little or no improvement 

in accuracy due to high autocorrelation and actual-

to-model data variance. As indicated in the chart, the 

hourly data model for Site 4 poorly predicted the actual 

data for swing season months possibly due to changes 

TECHNICAL FEATURE 
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in seasonal equipment scheduling. The model accuracy 

improved the most with interval data for Site 9. For this 

site, the interval data had limited autocorrelation and 

the model had a relatively low CV. 

Figure 4 presents the calculated uncertainty for a 

range of confidence intervals for the monthly, daily, 

and hourly regression models for each site. The values 

indicate the inaccuracies introduced by the M&V model 

in predicting performance. The results show that the 

uncertainty is reduced on average by 40% to 60% if using 

a daily data model instead of a monthly data model with 

the most impact seen at higher confidence intervals. 

Uncertainty is reduced further for hourly models—on 

average an additional 25% reduction relative to the daily 

model across all confidence intervals. 

The baseline energy uncertainty fractions shown in 

Figure 4 can be compared against the anticipated project 

savings fraction to assess if the M&V approach is effec-

tive for verifying project savings using whole-building 

electric data. Since the energy services will be offered 

across a portfolio of buildings, it makes sense to quantify 

the aggregated uncertainty of the data set. Since each 

building is unique from the next, the fractional uncer-

tainty across the portfolio is determined using Equation 

2, where ∆E is the savings uncertainty and N is the num-

ber of buildings in the portfolio. 

Equation 2. 
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Figure 5 shows the uncertainty expressed in terms of 

the anticipated savings. Our client estimates the range 

of project savings to fall between 5% and 15%. In the fig-

ure, the plot area upper bound is based on a 5% portfolio 

savings while the lower bound is based on 15% portfolio 

savings for a range of confidence intervals. The results 

show that the accuracy of verifying savings is noticeably 

improved using interval data.

Discussion
In our analysis, Guideline 14 equations quantified the 

uncertainty associated with the baseline M&V models. 

Developing models using shorter time interval data did 

drive down uncertainty—a trend expected for good mod-

els. The presence of autocorrelation greatly reduced the 

number of independent data points. Instead of going 

FIGURE 3 � Comparison between Site 4 and Site 9 M&V model data fit.
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from 12 to 365 to 8,760 data points, the effective number 

of data points was on average 12 to 150 to 700 (based on 

the average ń  in Table 1). 

The treatment does not account for other primary 

sources of quantifiable uncertainty, including popula-

tion sampling uncertainty and equipment measure-

ment uncertainty. For the case study, no population 

sampling across the portfolio was attempted for this 

preliminary assessment. Also, measurement uncer-

tainty is minimized by the use of revenue meter data. 

Other factors contributing to savings uncertainty that 

should be considered, although they can be difficult to 

quantify, include model mis-specification, lack of data 

on driving variables, and unaccounted for changes 

in load or operation conditions. Therefore, effective 

approaches for assessing accuracy must include quan-

tified and methodological considerations. For instance, 

excluded driving factors can be checked by looking at 

residual plots for unexplained patterns, a standard 

best practice in regression modeling. The more we can 

account for uncertainty in determining savings, the 

better we can manage risk and have confidence in proj-

ect results. 

Although Guideline 14 and IPMVP methods represent 

current best practices for quantifying uncertainty, there 

are shortcomings to the methods, which are actively 

being discussed by industry experts. The methods are 

limited to linear models and how they account for the 

real effect of autocorrelation. The best-practice equa-

tions apply to regressions with one independent variable 

but methods are needed to account for more advanced 

equations with multiple variables. In addition, service 

providers and building owners would benefit from guid-

ance on goodness of fit criteria. The Industry should 

specify these criteria and outline procedures for evaluat-

ing an M&V Plans including an Option C, advanced M&V 

approach. 

Another important consideration of current M&V 

methods is the approach for accounting for non-

routine events. Conditions and behaviors in build-

ings effecting energy loads are constantly changing. 

Conventional M&V practice includes creating a base-

line model to account for routine adjustments and 

using engineering calculations on an as-needed basis 

to make non-routine adjustments. Generally, only 

large changes are tracked used to adjust savings. This 

represents a source for high savings uncertainty for 

smaller projects. These issues can be managed with 

new advanced M&V tool capabilities that automate the 

identification of unexpected changes in whole building 

energy use. The U.S. Department of Energy and lead-

ing utilities are sponsoring research for quantifying 

the need for non-routine adjustments, comparing the 

ability of different tools to detect unexplained perfor-

mance changes, and evaluating simplified approaches 

for estimating uncertainty that is independent of 
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model algorithm. These efforts, which support the 

development of a standardized methodology, will 

greatly help the industry.

Conclusions
The results from our portfolio-level analysis helped 

our client inform their offering and business model 

by indicating the potential savings risk introduced by 

the M&V model. The analysis showed that the mod-

els developed with interval data reduced the portfolio 

savings uncertainty by 50% or more. At the high con-

fidence levels that were of interest to our client (e.g., 

90% and greater), the interval data models performed 

significantly better than the monthly data models. The 

assessment indicated that they would need to use whole-

building utility interval billing data for M&V to assess 

operational improvements in order to achieve their 

desired level of accuracy. 

The evaluation demonstrates how IPMVP and 

Guideline 14 methods can be applied to interval data, as 

well as the order of magnitude of the resulting accuracy 

improvements that may be achieved. Using an advanced 

M&V approach can also provide additional benefits, 

including insights into building operations, near real-

time savings assessment, and potentially shorter project 

monitoring periods. However, methods are still under 

development. Standardized and effective means to 

account for interval data autocorrelation are under 

discussion. Researchers are documenting and demon-

strating advanced M&V tool capabilities and developing 

testing procedures. The potential for such methods to 

expand the scope and means for delivering services is 

something that is worth service provider consideration. 

Incorporating uncertainty analysis into M&V methods is 

a key first step. 
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FIGURE 5 � Portfolio-level uncertainty fraction associated with a 5% to 15% esti-
mated savings range.
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