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Main findings

   Approximately 130 distinct distributed
benefits can collectively increase the
economic value of distributed resources
by typically an order of magnitude (~101 )

– Details are very site- and technology-specific

– But increased value too small to tilt traditional
commodity-cost-based investment decisions
toward distributed/green resources seems rare

– Some benefits aren’t reported or linked before

– Capturing many benefits depends on policy

– Described here for generation resources, but
also applies to storage and efficiency
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Objectives

• Comprehensively synthesize and rigour-
ously analyze distributed benefits,
quantifying each wherever possible

• Write the standard practitioners’ primer
• Create a pedagogy across disciplinary

boundaries, especially between electric-
al engineering and financial economics

• Embed in historical context
• Offer policy recommendations
• Make widely available for faster learning
• Preview highlights today; solicit your

suggestions for improvement
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Seismic shift

• 19/20th Centuries model: power
plants have higher cost and outage
rate than the grid, so both supply
and demand must be aggregated
through the grid

• 21st Century model: power plants
have lower cost and reliability than
the grid, so affordable and reliable
supply must originate at or near the
customer
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Meanwhile, unnoticed...

Central power plants, at least in the
United States, stopped getting…

– More efficient in the 1960s

– Cheaper in the 1970s

– Bigger in the 1980s

– Bought in the 1990s

Similar trends are now emerging in
most of the world.
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Scale surprises: on the margin, distribu-
ted resources are taking over the market

• The disappointing cost, heat rate, risk,
and reliability of large thermal stations
were leading their orders to collapse…

• …even before the “potential
difference” between nuclear and
combined-cycle costs stimulated
restructuring that began to delaminate
utilities…

• …creating new market entrants, un-
bundled prices, and increasing oppor-
tunities for competition at all scales…

• and launching the scale revolution
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Big units’ costs disappointed
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1960
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Big steam units aged ungracefully

Fossil-fueled steam units: median Equivalent 
Availability Factor vs. age, by size range, 

1982–93
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RMI analysis by André Lehmann, using Markovian smoothing of 29 July
1994 NERC raw data on all 1,347– 1,527 U.S. steam units in the years
shown; raw data kindly provided by Resource Insight, Inc.
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A 5-year rolling average reveals that U.S. fossil-
fueled steam unit orders have been fading

since the 1970s; their ordering rate, all 1/5 the
former size, is now back to Victorian levels

Maximum and average sizes of new generating units (fossil-fueled steam, all 

utilities, 5-year  rolling average) by year of entry into service
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Previous trends toward ever-larger units 
reverse in currently planned units, with a 
marked step back from the most gigantic 
ones. Is that all?

At first glance, it appears that the most
recently ordered steam units have only
retreated from the largest size range...
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The striped columns show an emerging 
new  intermediate-size-class category 
below 1.0 GWe, of which the largest 
capacity share is in 46–100-MWe units; 
even the previously robust 216–460-
MWe class's share is declining. Next stop
the 1940s' size distribution?

The 1.01–2.15-GWe class 
crashes; the 0.46–1.0-GWe class

But make a few front bars transparent,
and look what’s coming up in the garden
...new steam-unit size is shrinking 10
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Since 1983, nonutility generation has come
back, now making 27% of U.S. electricity

To many, though, it’s invisible: many California authorities
stated in summer 2000 that the state had added no capacity
in the 1990s, but the actual additions, 4.5 GW, exceeded
total nuclear capacity—it was just distributed and nonutility!

The fall and rise of nonutility generation
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What’s the right size for the job?
Most customers want kW, not GW

Average electricity consumption 

per U.S. household
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Three-fourths of U.S.
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10 kW (EIA statistical
sample, 1992, loga-
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Codifying distributed benefits

• Four kinds: financial economics, electrical
engineering, miscellaneous, externalities

• Many pioneered by utilities, mainly in ’90s
• As commercial value was discovered and

demonstrated while competition loomed,
most public-benefit research was halted;
most interesting data became proprietary

• While respecting confidences, RMI has
sought to compile enough data to form the
understanding required for public benefit
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Where does the order-of-magnitude
typical value increase come from?

• Financial-economics benefits: often
nearing ~10  renewables, ~3–5  others

• Electrical-engineering benefits: normal-
ly ~2–3 , far more if the distribution grid
is congested or if premium power relia-
bility/quality is required

• Miscellaneous benefits: often around 2
, more with thermal integration

• Externalities: indeterminate but may be
important; not quantified here
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• Short lead times & small modules cut risk

– Financial, forecasting, & obsolescence risks

– Overshoot /“lumpiness” in generation & grid

– +

– Or

Smaller, faster grid-support 
investments are worth more
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Tom Hoff’s analytic
solution shows it’s
worth paying ~2.7

more per kW for a 10-
kW instant resource
than for a 50-MW 2-y
distributed resource
(with +0 or +5 MW demand/y, 25
MW spare grid capacity, 10%/y
discount rate, $500/kW 5-y-lead-
time grid expansion; based on
decision
or option  theory approach)

101 : Minimizing regret (financial ecs.)
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Financial-Economics Benefits (cont’d)

– Benefit of modularity  benefit of short lead

time...especially strong when they’re correlated

– Portable resources are redeployable
• Benefits’ expected value rises and risk falls

– Rapid learning, mass-production economies
• Modularity captures falling costs, e.g. of PVs

– “Load-growth insurance” of cogen/efficiency

– 10  lower working capital can cut interest rate

–  Genuinely diversified supply portfolios
• U.S. coal and gas prices are ~84% correlated

• Include higher-cost, constant-price resources in
portfolio for the same reason that Treasuries are
included in an optimized financial portfolio
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Financial-economics benefits (cont’d)

– Constant-price resources vs. volatile prices

• Risk-adjusted discount rates, using the gas-price
risk premium discovered in the market or predic-
ted from historic betas using CAPM, imply that
the present value of a gas cost stream should be
nearly doubled for fair comparison with, say, wind

Effects of Discounting Avoided Costs
At Risk-Adjusted Discount Rates
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assuming that
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equal risks
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Distributed Benefits (continued)

• ~2–3  (sometimes 10 ): Utility invest-
ments & operations (el. engineering)

– Onsite generation or DSM reduces loads
• Reduced or deferred grid investments

– Some distribution bottlenecks cost >US$2,000/kW

– Just avoiding routine T&D investments can relieve
utilities’ greatest capital burden

Allocation of investor-owned utilities' construction 

expenditures, 1945-98, excluding nuclear fuel
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Except for the
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binge, grid
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tury—even more
today when most
new generation is
outsourced
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Delivering electricity is expensive

• Delivering a kWh to an average U.S. major-
IOU customer in 1995 cost ~2.34 US¢/kWh—
more than short-run marginal gen’g cost, and
nearly total cost of new combined-cycle plant

• Delivery to smaller customers costs more:
~3–4+¢/kWh embedded, often ~7–9¢ marginal

• Distributed generation saves distribution
costs (often including marginal distribution)
and the ~2–5¢/ kWh energy cost

• A pure disco has undiluted delivery costs
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Reduced/deferred grid investments (cont’d)

• Ontario Hydro’s first three experiments
in Local Integrated Resource Planning
—aiming distributed resources like a
rifle, not a shotgun—cut capital costs
up to 90%; by 1995, saved C$1.7 billion
of grid investments

• New-hookup breakeven distance can
be not km but m: e.g., SMUD’s PV alley
lights cost ~2/5ths less to install than
just connecting to the existing wires,
including trenching and conduit cost
and the meter (but not energy or meter-
reading costs); same on PG&E pylons

• Ing. Caes Daey Ouwens’s experiences
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Distribution assets stand famously idle
much of the time, much more than genera-
tors, despite their often higher capital cost
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A typical early-1990s PG&E feeder was used at <50% capacity
>60% of the time, and reached 70% utilization <10% of the time
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Basking in the hot spots

• The finer-grained the scale and hence
the demand patterns, the less load
diversity, so the lower the distribution
asset utilization

• Aggregating up to feeders, substations,
and whole utilities shares gen. capacity

• But distribution capacity must reach
every customer, so it inherently suffers
from worsening load factors all the way
out to the end of the system

• That’s where distributed resources win
• Same when fine-grained in time domain
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Grid losses increase downstream, so
distributed resources cut losses more

• At system peak, EPRI estimates national-
average  T&D grid losses double from ~7% to
~14%; but where are those losses?

• Murray Davis (Detroit Edison) estimates as
typical peak losses 2–3% for T, 6–8% for
T+subT, 13–16% for T+subT+D

• Therefore resources sited at/near the down-
stream end, i.e. distributed resources, can
avoid the biggest grid losses

• They also avoid the biggest grid
investments —~US$400–500/kW, not just
$100–150/kW

• Save V- and VAR-control equipment too
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Precooling is valuable too
Substation PVs that peak before the
substation’s peak load can still valuably
precool the transformer, which has
considerable thermal mass; by the time
the PV output decreases and the trans-
former heats up, the peak has passed.
Tracking or SW- or W-oriented PVs can
also provide output that peaks much
later in the afternoon, increasing their
capacity credit and economic value

Because deterioration is twice as fast
for each 10 C° of heating, the last few

bins in the histogram of transformer
tempera-ture represent most of its life-

shortening, so shaving the peak load
that causes them will capture most of

the life-exten-sion benefit: e.g., cooling
the Kerman transformer by only ~4–7 C°
on hot days stretched its life ~5 y, worth
an impres-sive ~US$89/kW-y in original
evaluation
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Improved supply reliability/resilience
EPRI-website synthetic
satellite image, 10
August 1996…utilities
routinely keeping the
lights on. But ~98–99% of
U.S. outages are caused
by the grid. For example...

35 seconds later, after an
Oregon powerline sags into
a tree limb, operational goofs
plus poor communications
black out four million people
in nine Western states and
parts of Canada. Local
supply prevents that—and
up to 95+% of grid failures
are in the distribution system
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Service reliability and power quality

• Resources nearer loads facilitate isolation
and bypassing of distribution faults
– Fewer customers cut off, for less time

• Isolated generators can give critical uses
premium power quality and reliability
– Central-station system designed for 99.99%

availability, but T&D system cuts to 99.97%
—~10–30  worse than generation alone

– Many businesses need 99.9999% availability
(NB: not a quantity problem!—Mark Mills wrong* by 8 )

– Normal microgrids can be designed for 99.99%
– Distributed solutions can provide as many 9s

as necessary at modest marginal cost
– FAA ground avionics: PVs beat grid power

*http://enduse.lbl.gov/Projects/InfoTech.html
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Grid & operational benefits (cont’d)

• Centralized resources are thus too costly
and unreliable for many smaller customers

• Inverter-driven resources’ flexibility
– Free reactive power support in real time
– Near-infinite ramp rates offer transient stability

options unavailable from rotating machinery
• Fuel cells can go 0 100% power in a few ms
• Wind turbines’ soft mechanical coupling

can improve transient stability and fault
clearing

• Smaller units cut reserve margin
– Also spinning reserve and keep-warm fuel

• Lower av. system cost may reduce buy-
back tariffs to independent generators
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Many distributed resources have
extremely high availability

Even modestly
less reliable
units enormous-
ly raise
required
reserve
margins to
maintain the
same reliability
in isolated sys-
tems; but dis-
tributed genera-
tors are often
ultrareliable too!

• Fuel cells, PVs, and good wind turbines are extremely available
—more so than any fueled heat-engine technologies

• So are intermittent renewables if well diversified and dispersed
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Isolated generators, or those shared in a
small “power island,” can be justified
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Combining a modest number of fairly
reliable modular generators can soon
achieve extremely high collective
availability, because for a plant with
n independent identical modules,
vari-ance of availability equals p
(1–p)/n

But it also takes very few customers to offer enough aggregate
load diversity to share generating capacity efficiently, reducing
total investment dramatically

Murray Davis (Detroit Edison) calculates that microturbine self-
generation isolated competes with central station and grid, with
no thermal credit for cogeneration or trigeneration potential; even
adding local reserve margin costs less than utility standby power

“Integrating Distributed Resources into Electric Power Systems of the Future,” Procs. Distributed Generation Conf., 1–2 March 2000,
Denver
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Emerging logic of the microgrid

Tom Hoff and others state it thus:
1. Load diversity makes the total peak load

increase more slowly than the number of
customers, then flatten out

2. Adding more generating units, especially if
they’re small, reliable, and diversified,
rapidly increases their collective reliability

3. Even if smaller installed units cost
more/kW, their optimal unit size can still be
quite small

4. Attractive system scale in between full grid
connection and stand-alone customers…

5. And no stranded costs to pay!
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utility year-2000 US¢ private internal cost / delivered av.

kWh)
• Remote, incl. ~2.5¢/kWh av. delivery cost

– Nuclear: ~8–15+ (SAfr ~5–10??) (~4–7+ op’g.)
– Coal: ~6–8 (~4–6 op’g.)
– Combined-cycle with constant-price gas: ~5–6

(late ’90s), 2001 ~6–7 (temporary spot shortage)
– Remote wind: ~6–7 in 1999, ~5 in 2002 (@ 5.6–6

m/s, 10 m; excludes 1.5¢ Federal subsidy; zero
fuel-price risk can nearly double value vs. gas)

• Onsite, avoiding delivery cost (*w/ heat cr.)
– Photovoltaics: ~18–30, bldg-integrated 8–20

(but power quality valuable, & 1990s price –43%)
– Microturbine trigen* w/const.-price gas: <1–5
– Industrial cogen* w/const.-price gas: <1–2
– End-use efficiency: <0–1 (some homes 2–4+)
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Distributed benefits (continued)

• ~2  (more for co-/trigen): Other values

– Thermal integration (heat, cool, dehumidify,
chemical process heat,…), FC pure hot water

– Potential use of local fuels/wastes

– Photovoltaic roof integration and shading

– Lower prices for rural land without utilities

– Scores of other small terms
• Externalities (“NEEDS”)

– Environmental, social, institutional, etc.

– Some are (L.A. NOx) or may be (CO2) internalized

– Hard to quantify but may be politically decisive
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Twelve drivers of distributed utilities

• “Distributed benefits” sharply raise value
• Supply-side advances

– Superefficient end-use  less/cheaper supply

– Onsite cogen/trigen: microturbines, PAFC,…

– Building-integrated/“vernacular” PVs, cheap
windpower, other competitive renewables

– 96+%-efficient electric storage, reversible FCs

– PEMFCs in buildings, plug-in HypercarsSM,…

– “Hydro-Gen,” renewable H2, and wellhead-
reformed natural gas*; sustainable biofuels

* Lovins & Williams, “A Strategy for the Hydrogen Transition,” NHA 4/99, at www.rmi.org
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Fivefold-More-Efficient Midsize SUV
• 5 big adults, up to 1.96 m3 of cargo
• Hauls 460 kg up a 44% grade
• 857 kg (47% mass of Lexus RX300)
• Head-on wall crash @ 56 km/h

doesn’t damage passenger cell
• Head-on collision with a car twice

its mass, each @ 48 km/h, meets
U.S. occupant protection stds. for
fixed-barrier crash @ 48 km/h

• 0–100 km/h in 8.3 seconds
• 2.38 L/100 km equivalent (5  RX300)

• 532 km on 3.4 kg of 345-bar H2

• 89 km/h on just normal a/c energy
• Zero-emission (hot water)
• Sporty, all-wheel digital traction
• Ultrareliable; flexible, wireless

diagnostics/upgrades/tuneups
• 320-Mm warranty—no dent or rust
• No damage in 10-km/h collision
• Competitive cost expected
• Decisive mfg. advantages

An illustrative, uncompro-
mised, manufacturable,
and costed concept car
(Nov. 2000) developed for
a few million dollars in 8
months by Hypercar, Inc.
(www.hypercar.com), on
time and on budget, with
attributes never before
combined in one vehicle
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HypercarSM vehicles will ultimately...

• save as much oil as OPEC now sells
• displace 1/8 of the steel market early,

~7/8 eventually, getting out of the Iron Age
• decouple road transport from climate
• offer ~3–6 TW of U.S. distributed generating

capacity with attractive economics—~5–10
total present U.S. generating capacity

WHEN? Within your planning horizons!
• Hypercars will be widely available in ~5 y,

dominant in ~10 (see open-source chrono-
logy at www.rmi.org/sitepages/tid414.asp)

• Old way of making cars will be toast in ~20 y
• What about the electricity industry?
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Hypercars can greatly accelerate
the hydrogen transition

• Make cars ready for direct hydrogen
– Packageable ~345-bar compressed-H2 tanks

– No liquid-fuel reformer needed
– 3  lower tractive load needs 3  fewer kW

– Tolerates 3  higher $/kW, reached far earlier

• Integrate stationary and mobile uses to
leverage both (both markets very big)

• Make the H2 transition profitable at each
step, starting now, by a sequence RMI
has published*, already being adopted
by major energy/car companies

*“A Strategy for the Hydrogen Transition,” Natl. Hydrog. Assoc., 4/99, www.rmi.org
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Four Steps to a Hydrogen Economy
• Fuel-cell cogeneration in buildings, mak-

ing H2 from nat. gas or offpeak el., soon
makes fuel cells affordable for Hypercars

• Fuel them from nearby buildings’ extra
H2, sell back power from parked cars,
earn $$

• Put cheap H2 appliances in “gas stations”
• Build up H2 market justifying bulk prod’n.

– From wellhead-reformed natural gas (w/CO2
reinjection) or renewable electricity (greatly
improving its economics); maybe HCs/coal?

– 2 sources, many scales, robust competition
– Climate-safe, practical, profitable, mkt-driven
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Twelve drivers (continued)

• Grid and control advances

– Advanced switches/telecom let automation
of the distribution grid shift topology from
unidirectional tree to omnidirectional web

– Pervasive real-time energy and stability
pricing, customer communication; “out-of-
control” distributed intelligence?

• Control can disperse at least to substation level

• Perhaps even to customer or device level

• Outcome uncertain but direction clear
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Twelve drivers (continued)

• Market/institutional advances

– Competition values many previously
unmonetized distributed benefits

– So does unbundling power quality & relia-
bility, grid stability, cost control,…

– New market entrants better understand
needed disciplines (financial ecs.,…)

– Local Integrated Resource Planning (being
done by >100 North American electric
utilities) prospects for distributed benefits
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The distributed utility revolution

• All twelve drivers reinforce each other,
regardless of restructuring outcomes

• The shift to distributed generation is
rapidly accelerating

– US new units mainly at 1940s scale (106–7 W)

– Will soon be at 1920s scale (103–4 W)

• Important rules remain unresolved
• But market demand will probably force

simpler interconnects, net metering
(now in 34 states),…

• Integration w/efficient end-use is starting
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Policy needs

• Most restructuring rewards the wrong
thing (selling more kWh at low prices,
rather than reducing customers’ bills
and society’s total costs), and tends
to reinforce incumbents’  monopolies

• Most restructuring seeks commodity
competition in bulk generation, which
is rapidly becoming obsolete

• Barriers to distributed generation are
being tackled locally and rather slowly

• Green power needs to be marketed as
a constant-price resource
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Policy needs (cont’d)

• Who gets which distributed benefits
often depends on policy changes

• RMI’s book will discuss many policy
issues, with examples, in the
context of evolving electricity
business stra-tegy and public-policy
objectives

• The wider context of Natural Capital-
ism (www.natcap.org) is also impor-
tant for understanding distributed
resources’ benefits and prospects

• So is the renascent “negawatt
revolution” now gaining momentum
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Negawatts: another conversation...
• Customers are starting to figure out that negawatts

cost less than megawatts (and often yield vastly more
valuable side-benefits, e.g. labor productivity)

• Electricity’s price will probably become less important
• Customers will want to buy more efficiency and less

electricity; the only question is from whom they’ll buy
• It’s a sound business strategy to sell customers what

they want…before someone else does
• Vastly better tools, delivery methods, financing today
• Negawatts needn’t be deregulated because, being

invisible to most policymakers, they were never
regulated: anyone can still sell them anywhere!

• Whole-system design, optimizing for multiple
benefits, can often make very big savings cost less
than small or no savings (“tunneling through the cost
barrier”)

• Efficiency often potentiates distributed generation
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US energy use/$ GDP already cut 40%, to
very nearly the 1976 “Soft Energy Path”
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California: policy really does work

Per-capita electricity consumption, 1960–2000

0

2

4

6

8

10

12

14

16

1960 1965 1970 1975 1980 1985 1990 1995 2000

Rest of U.S.

California

Populations 1991–2000 not yet renormalized to 2000 Census; this

will lower U.S. and raise California per-capita kWh by ~2% each in

2000



© 2001 Rocky Mountain Institute, www.rmi.org

A simple question

• How could a California electricity
system that met a 53-GW peak load in
summer 1999 fail to meet a 29-GW
peak load in January 2001?

– Yes, there was a hydro drought (–5 GW),
some plants were down, etc...

– But half the capacity didn’t disappear!

• Something beyond a simple capacity
inadequacy must have occurred.
Hmmm…enough capacity, not enough
electricity, so…?
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So what’s happening in California?
• Noncauses claimed: soaring demand, Internet,

no power stations built, oil shortage
• Complex actual causes: botched restructuring

+ concentrated mkt power raised profits for
selling less electricity (~10–15 GW withheld);
disincentivized efficiency and gas storage;
canceled clean plants; anticompetitive prac-
tices; efficiency can’t bid against supply nor
get a price signal; freeloaders on pool; etc.

• Nonsolution: same firms add more capacity?
• Solutions: demand-side management

(kWp/GDP –14% 6/00–6/01), distributed
generation, reward both, remove incentives to
withhold capacity

• A cool July has already put CA in overshoot
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California’s shortage-to-glut saga

• In 1984, CA had a ~37-GW peak load
• Had committed 12 and was buying

another 7 GW of demand-side resources
through ’94 (~10 were ultimately procured,
~9 lost)

• By 3/85, had 20.3 GW of independent gen-
eration, mostly renewable, on firm offer,
57% of it online or contracted and being
built—plus another 9 GW per year!

• By 4/17/85, when the CPUC suspended
most new small-power contracts, 13.1 GW
was already under contract and another
8+ GW  i  ti ti



© 2001 Rocky Mountain Institute, www.rmi.org

California’s shortage-to-glut saga (2)

• Thus, had this boom been allowed to
continue through 1985, those dispersed
generators, averaging only 12 MW each
and with lead times ranging from months
to a few years, could have displaced all
27 GW of thermal plants in California

• The transition from scarcity to glut took
only about two years—yet for years
afterwards, 24 other states were all still
seeking to sell CA their surpluses at once

• White House wants to repeat experiment
(though fortunately it’s unfinanceable)
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Risk of national rerun of 1985–86
• 2001 conditions eerily reminiscent of 1980
• 1979–86: second oil shock + continuation

of Carter Administration’s oil- and energy-
saving policies (which cut Persian Gulf
oil imports by 87% in 1976–85) cut total
US energy use 5% and oil use 13% whilst
real GDP grew 20%: E/GDP fell by 3.4%/y

• In 1996–2000, E/GDP fell 3.1%/y, nearly
matching that record—despite record-
low and falling energy prices through
1999

• Higher 2000–01 prices won’t slow savings
• Now add supply push (+200 GW to 2007)
• Only a few % of eff. reserve crashes mkt.
• Likely yet again to ruin suppliers — will

have expansion’s cost without revenues
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Analogies beyond electricity

• H2, local biogas raise similar gas opps.

• Even more important water analogies

– Distributed supply: roof capture/cisterns
• Leave cisterns normally 50% empty for stormwater

• Justified by avoided central potable water supply
or storm-water removal capacity (Byron study)

– “Distributed reservoirs” if remotely controlled
• Los Angeles/Tree People ’98 experiment: retrofit

old bungalow with 13 m3 cisterns, retention grad-
ing, driveway drywell, mulched swales; 71-cm
“storm” (30 kL/20 minutes); not a drop left the site

• Flood control, water imports –50–60%, less toxic
runoff, better air/water, –30% yard wastes to land-
fill, beauty, jobs (~50k “urban watershed mgrs”)
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The right size for wastewater systems

– 2001 RMI/EPA seminar identified
scores of distributed benefits; report
6/02

– Adelaide whole-system capex analysis
(Clark, Tomlinson, Perkins, Wood ’95–7)

• Wastewater treatment capex  scale 
2/3, but

~90% of system capex is for collection,
which has severe diseconomies of scale

• ~101–3  smaller systems therefore cost less,

“can be more readily developed and appear
able to compete”, can build more flexibly

– Village/neighbourhood scale is also
ideal for cheaper biological treatment
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Sewage is a valuable resource

Living Machines™ turn
sewage into clean water

and flowers; no odour or
hazard

Dr John Todd

Better still: don’t make wastewater in
the first place! (urine-separating
toilets, greywater irrigation,…)
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US has been quietly saving water
twice as fast as energy
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Thank you! And please visit...

• www.rmi.org (general information)

– Its Transportation section gives public
information about Hypercars; also big
sections on energy and Calif. electricity

– Linked to www.hypercar.com (the

new technology development company)

– Linked to www.naturalcapitalism.org or
www.natcap.org for short (the wider
context—making business far more
profitable by behaving as if nature and
people were properly valued)
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