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Abstract 

The “next generation” electric utility must incorporate 
variable renewable resources, including wind and solar, in 
much larger quantities than conventionally thought possible. 
While resource variability presents a challenge, it should be 
possible to reduce and manage that variability by 
geographically distributing renewables, combining them 
with different renewables, and having more dynamic control 
of electric loads. 
 
This analysis expands previous studies on reducing the 
variability of renewable resources through optimized 
geographic distribution. In this study, the period of analysis 
was lengthened from one year to three years, and the study 
area was enlarged to include all states within the Great 
Plains “wind belt.” Lengthening the period of analysis 
produced no significant difference in either power output or 
variability. However, enlarging the geographic area to three 
reliability regions (MRO, SPP, ERCOT) reduced system 
variability by 28% relative to the average individual region. 

1 INTRODUCTION 

The ever-growing energy demands of the 21st century are 
dependent upon a power infrastructure designed for the 
early 20th century. Advances in digital communications and 
renewable energy technologies could facilitate a transition 
to a “next generation utility” that fully integrates both 
supply- and demand-side resources in a way that can enable 
significantly larger penetrations of variable renewable 
energy technologies than conventionally thought possible. 
 
This paper begins with a brief overview of the “next 
generation utility” concept, then turns to the ability of the 
next generation utility to incorporate solar and wind power 
on a large scale, driven by geographical dispersion of both 
solar and wind resources at utility and larger scales, cross-
firming of solar and wind resources, and increased grid 
flexibility to absorb and mitigate variability. 

2 THE NEXT GENERATION UTILITY 

A new electric utility paradigm is needed to meet increasing 
demands for power quality and reliability and to 
significantly reduce global greenhouse gas emissions 
generated by electricity production. To this end, a new 
generation of power technology is developing that can 
enable the “next generation utility”, which will involve: 
 
• Fully capturing the potential of energy efficiency and 

demand response; 
• De-carbonizing electric supply through greatly 

increased penetration of renewable and distributed 
supply technologies; and 

• Electrifying or substituting clean, renewable fuels for 
loads that would otherwise depend on fossil fuel, 
including vehicles. 

 

 
Fig. 1: The next generation utility will turn generation 
infrastructure on its head, with a mix dominated by efficiency and 
renewables with minimal coal and nuclear. 

A key tenet of the next generation utility concept is that it 
should be possible to provide the energy services required 
by our modern society using significantly less “baseload” 
coal and nuclear power. Doing so requires increased 
reliance on variable renewable sources and more dynamic 
control of energy demand, and consequently, more focus on 
short time scales. 
 
Taken together, the components of the next generation 
utility can be thought to interact as seen in the load duration 
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curve in the figure below. Specifically, radical gains in 
building energy efficiency should reduce the entire demand 
significantly. Demand is then met largely through an 
intelligently designed portfolio of variable and “firm” 
renewable resources. Finally, remaining demand is met 
through a combination of distributed generation (combined 
heat & power and combined cooling, heat & power), 
demand response and plug-in hybrid electric vehicles. 

 
Fig 2: Conceptual load duration curve for a next generation 
utility.  

The design of the next generation utility concept is currently 
under development by Rocky Mountain Institute. This paper 
describes research around new strategies for integration of 
large-scale variable renewable resources. 

3 BACKGROUND 

One of the primary goals of electric utilities is maintaining 
the reliability of the electric system—the implication being 
that the reliability of any individual generator is only 
important in the larger context of system reliability. This 
insight also recognizes that all generators, both conventional 
and variable, have some probability of failure. The forced 
outages of conventional generators result from unplanned 
mechanical failures, whereas the effective “forced outages” 
of variable generators are due to the risk of “fuel” (i.e., wind 
or sun) availability. These two factors lead to the conclusion 
that we must evaluate variable renewable generators for 
their contribution to overall system reliability, rather than 
the reliability of an individual renewable generator. 
(Milligan 2002) 
 
Because of the implications for reliability, capacity credit—
the amount of capacity that can be counted on to contribute 
to system reliability—has financial value and can therefore 
greatly improve the cost-effectiveness of wind power. 
Conventional wisdom holds that capacity credit is given to 
an individual site based on the individual site characteristics. 
(Milligan 2002) This philosophy generally leads to the 
assumption that wind farms have little or no capacity value 

because the degree of the resource’s variability is so high at 
each individual site. (Kirby, et al 2002)  
 
Similarly, while solar is more predictable than wind, it is 
still variable and therefore given little credit for contributing 
to system reliability. 
 
However, modern financial portfolio theory offers a 
different way of looking at the world. A financial portfolio 
consists of a combination of individual stocks. Developed 
by Harry Markowitz in 1952, modern portfolio theory 
enables the creation of minimum-variance portfolios for a 
given level of expected return. This theory is based on 
diversification—the lower the correlation between the 
individual assets that make up the portfolio, the lower the 
portfolio variance, or risk. (Alexander 1996) 
 
Portfolio theory can be easily applied to energy resources. 
In this context, a renewable portfolio can comprise a 
geographically dispersed set of wind farms and solar electric 
systems. This paper seeks to analyze the reliability value, 
and therefore capacity value, of a set of wind and solar 
generators dispersed across the U.S.  Midwest and Texas. 

4 DATA AND METHODS 

4.1 Data Sources 
This study attempts to maximize the use of high quality 
measured wind speed and solar insolation data, all recorded 
at hourly intervals. The wind data were measured at or 
above a 40-meter hub height and the solar data includes 
separate direct and diffuse radiation values. 
 
The 3-year analysis was conducted with data from years 
2002-2004 for 26 wind sites and 8 solar sites within the 
Midwest Reliability Organization (MRO). This region and 
timeframe were selected because they provided the highest 
number of sites for which three years of data were available. 
The expanded geographic analysis was conducted for sites 
within MRO, Southwest Power Pool (SPP), and Electric 
Reliability Council of Texas (ERCOT), with data from year 
2004. The 63 wind sites for this analysis were identical to 
those used by Hansen and Levine (2008), plus 8 solar sites 
in MRO used by Palmintier, Hansen, and Levine (2008), 3 
additional solar sites in SPP, and 5 additional solar sites in 
ERCOT. 
 
All wind data was chosen from the RMI/UC-Boulder wind 
database compiled by Levine and Hansen (Levine 2007, 
Hansen & Levine 2008). The original source for the MRO 
and SPP wind data was the University of North Dakota 
Energy & Environmental Research Center (EERC) hosted 
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Plains Organization for Wind Energy (POWER) database.1  
The original source for the ERCOT data was the Alternative 
Energy Institute (AEI) hosted by the West Texas A&M 
University (WTAMU).2 
 
All solar data was taken from the National Solar Radiation 
Database (NSRDB) 1991-2005 Update, maintained by the 
National Renewable Energy Lab (NREL).3 Though this 
database contains radiation data for 1,454 sites, only 40 of 
these sites include measured data. This measured data was 
used wherever possible, but modeled data was 
supplemented where necessary to increase the spatial 
diversity of the dataset. 
 
The 3-year analysis included solar insolation data from 3 
measured sites and 5 modeled sites within MRO. The 
expanded geographic analysis included data from 2 
measured sites and 1 modeled site in SPP, and from 5 
modeled sites in ERCOT. All modeled sites were carefully 
selected to be class-I sites with 100% low data uncertainty 
during the periods of analysis. (NREL 2007) 
 
All sites considered in this analysis are shown in the graphic 
below, with wind sites shown in blue and solar sites shown 
in yellow. 
 

 

4.2 Data Preparation 
Both wind speed and solar insolation data were first cleaned 
to remove any negative, grossly out of range values, or 
flagged invalid points. These removed points were 
conservatively set to zero. The measurement times were also 

                                                             
1 Available on line at: 
www.undeerc.org/programareas/renewableenergy/wind/default.asp 
2 Monthly average data available on line at: 
www.windenergy.org 
Hourly data available upon request 
3 Available on-line at: 
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/ 

normalized to coordinated universal time (UTC) to ensure 
data alignment across time zones. 
 
For wind, the raw wind speed was converted to a consistent 
80-meter or greater hub height using the methodology 
described in detail in Hansen and Levine (2008). In 
summary, all data gathered at lower than 40m were 
discarded, data gathered between 40m and 80m were scaled 
up to 80m, and all data gathered at or above 80m were left 
at the recorded height. Wind speeds were adjusted for height 
using the one-seventh-power rule. 
 
For solar, both direct (beam) insolation and diffuse 
horizontal collector data was included. Where measured 
solar data was not available on an hour-by-hour or site-by-
site basis, modeled data was substituted when possible. 

4.3 Wind Power Production Model 
As described further in Hansen & Levine (2008), the 2 MW 
Vestas V80 was chosen to model power production. The 
turbine’s power curve was adjusted for elevation and air 
density at each site. 

4.4 Solar Power Production Model 
Solar power production was modeled for an idealized 1-axis 
polar mount tracking photovoltaic system with a maximum 
power point (MPP) tracker. Although solar thermal systems 
are more common for utility scale solar power, a 
photovoltaic system was chosen in this analysis because: 
 
• The NSRDB-Update modeled direct insolation data 

does not adequately capture some frequency 
components important for solar thermal analysis 
(Renné, et al 2008); and 

• Concentrating solar power production, including solar 
thermal is less suited for areas, such as MRO and SPP, 
where diffuse radiation comprises a substantial portion 
of the total insolation. 

 
More information about the solar power production model 
can be found in Palmintier, Hansen, and Levine (2008). 

4.5 Scaling and Interconnection 
As described in section 3, this study combined multiple 
individual generation sites to create portfolios of 
geographically and resource (wind vs. solar) diverse 
generation. This analysis does not consider the constraints 
and losses associated with an interconnecting transmission 
system and other infrastructure components. 
 
To facilitate comparisons of results for different scenarios, 
all individual wind and solar site data was scaled to a 
nameplate power rating of 100 megawatts (MW) AC. For 
solar, this scaling was done on the AC power rating at 1-sun 
(1000 W/m2). When multiple sites were interconnected to 
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form a portfolio, individual site output power was scaled 
such that the total nameplate power for the portfolio was 
kept at 100 MW. The selection of 100 MW was arbitrary, 
and the results can be readily scaled up (or down) as needed. 
The use of 100 MW also affords easy conversions to/from 
percent of nameplate load.  

4.6 Variability and Output Metrics 
The variability of site (or portfolio) output was quantified as 
the standard deviation, σ, of the (combined) hourly power 
production in MW. The standard deviation also has units of 
MW. The output was quantified as the arithmetic mean of 
the hourly power production in MW. If desired, this average 
output measure can be converted to annual energy 
production in megawatt-hours by multiplying by the number 
of hours in a year. 
 
In addition to representing important considerations for 
integrating a variable resource into a utility load, the choice 
of mean and standard deviation allow for significant 
computational savings when optimizing large portfolios. 
This is because, rather than having to recalculate the hour-
by-hour power output at each optimization step, it is only 
necessary to scale the covariance matrix and mean. 
 
The computation of the portfolio mean power output,

€ 

pp , 
for n sites is straightforward: 
 

€ 

pp = ai pi
i=1

n

∑  

 
where ai is the percent share, or weight, of generating 
capacity for an individual site. And 

€ 

pi is the mean of the 
hourly output series, Pi, of the corresponding site. 
 
The computation of the portfolio standard deviation, σp, 
takes advantage of the fact that the variance (σ2) of the sum 
of a set of random variables, Xi, is equal to the sum of the 
elements in their covariance matrix. Namely, 
 

  

€ 

Var(X1 + X2…Xn ) = Cov(Xi,X j )
j=1

n

∑
i=1

n

∑  

 
And the property that the covariance of scaled random 
variables is equal to the scaled covariance of the original 
variables: 
 

€ 

abCov(X,Y ) = Cov(aX,bY )  
 
As a result, the portfolio output power variance is given by: 
 

€ 

σ p
2 = aia j Cov(Pi,Pj )

j=1

n

∑
i=1

n

∑  

 
or in Matrix form: 
 

€ 

σ p
2 = aTµa  

 
where: 
 

  

€ 
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a1

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Var(P1)  Cov(P1,Pn )
  

Cov(P1,Pn )  Var(Pn )
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 

 
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 
 

 

 
since Cov(X,X) = Var(X). 

4.7 Optimization Methodology 
Portfolios of wind and solar resources were developed by 
siting resources at those sites that would minimize overall 
portfolio variability for a given average portfolio power 
output. Therefore, not all available sites were included in 
every portfolio, and a number of different portfolios were 
created given different average portfolio power outputs. The 
portfolio variability was minimized using Monte Carlo 
methods subject to a constraint on the average output power: 
 

€ 

minimize(σ p )   subject to 

€ 

pp ≥ plimit  
 

This portfolio power constraint, plimit, was varied from the 
minimum to maximum single site output average power, pi, 
for the set of sites in a scenario. Rather than running a 
separate optimization for each Plimit, in which any runs that 
did not meet the constraint must be thrown out, the results 
of each Monte Carlo trial were binned according to output 
level. In this way the simulation lets us run multiple 
constrained optimizations simultaneously. 
 
Also, to more fully explore the potential value of sparse 
portfolios, at the start of each trial random weights were 
assigned not to all n sites, but to a randomized subset, N, of 
the available sites. This was necessary since the probability 
of multiple zero or near-zero share members existing in a 
portfolio of randomly weighted sites drops precipitously 
with increasing n. 

5 RESULTS AND DISCUSSION 

The following sections present results for the analysis of 
portfolio development based on 1 year versus 3 years of 
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hourly data, as well as the analysis of variability reduction 
across MRO, SPP, and ERCOT. 
 
For each scenario there is a set of optimal portfolios that 
represent a trade-off between variability (standard 
deviation) and power output (

€ 

pp ).  
 
This concept is represented graphically with the efficient 
frontier shown in figure 3.  This plot shows the trade-off 
between risk (variability) and reward (output). Individual 
sites appear as points, while optimal portfolios lie along a 
curve. Moving toward the left (lower variability) and up 
(higher output) represent desired trajectories.  
 
The output versus variability curve illustrates the tradeoff 
between higher output and lower variability of renewable 
resources. Because all renewable sites will occasionally 
produce zero power, the power output of sites with large 
quantities of sun or wind tends to vary more greatly than the 
power output of sites with smaller quantities. This trend is 
illustrated by the upward sloping nature of the output vs. 
variability graph. Therefore, in order to fairly compare the 
variability of two renewable portfolios, the average power 
output of both portfolios must be equal. Variability 
reduction can always be accomplished at the price of 
capacity factor; the purpose of this study is to prove that 
variability reduction can be accomplished through 
intelligent geographical distribution without reducing 
capacity factor. 
 
Therefore, when we compare the variability of an optimized 
wind portfolio to that of an optimized wind/solar portfolio, 
we must choose portfolios with the same capacity factor.  
Likewise, when we compare the variability of a portfolio to 
the variability of the average individual site, we must 
choose a portfolio with capacity factor equal to the capacity 
factor of the average individual site. 

5.1 3-year analysis 
Expanding the analysis from 1 year to 3 years produced no 
significant difference in either portfolio power output or 
portfolio variability. Over 3 years, the portfolio chosen 
based on 1 year of data produced 0.7% less energy with 
0.2% more variability than the portfolio chosen based on 3 
years of data. This is illustrated graphically in figure 3, 
which shows both an efficient frontier and load-duration 
style curve for the 1-year analysis vs. the 3-year analysis. 
 
For this example, then, the conclusion is that optimal sites 
for low-variability portfolios can be selected based on 1 year 
of data, so long as the weather for the year in question is 
fairly typical, as was 2004. 

 
Fig. 3: Efficient frontier and load (output) duration4 for the 3-year 
MRO analysis vs. a 1-year  analysis with the same sites. 

5.2 Expanded geographic area 
This section analyzes the variability reduction potential in 
MRO, SPP, and ERCOT individually, and in all three 
regions combined. Integrating wind resources across all 
three reliability regions would require grid ties between 
ERCOT and the Eastern Interconnect. 
 
The charts below show average power output versus 
variability for individual sites within a particular region, and 
for the set of portfolios with minimum variability for a 
given level of output. In each chart, the optimized portfolio 
with power output equal to the average of the individual 
sites is circled. The sites that compose that portfolio are also 
circled, and the variability reduction between the portfolio 
and the average individual site is given.  
 
                                                             
4 The load (output) duration curve must be calculated for a specific 
“bin” along the output vs. variability curve. In this paper, all load 
(output) duration curves  are calculated for the “bin of greatest 
return”, which is the bin with the highest power output before the 
curve bends sharply to the right, introducing significantly more 
variability. In this case, the “bin of greatest return” is bin 17. 
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Fig. 4: Output vs. variability for MRO, ERCOT, and SPP, 
respectively.  The graphs show that portfolios can achieve equal 
power output with less variability than any individual site.   

Of particular note is that a large variability reduction can be 
gained without spreading the resource to all available sites. 
That is, a few carefully chosen sites can provide the same 
benefit. 
 
Given the results of Palmintier, Hansen, and Levine (2008), 
it was not surprising to find that expanding the analysis to 
three reliability regions produced an optimized portfolio 

with lower variability than any individual region alone.  
Specifically, the optimized portfolio for the expanded region 
was 28% less variable than the least variable individual 
region (ERCOT). In addition, the 80/90/95/99% available 
output rose from 13/8/6/2 MW (out of 100 MW total) in the 
best individual system (SPP) to 15/11/8/4 MW for the three 
combined systems. 
 

 
Fig. 5: Output vs. variability for the combined system vs. 
individual regions. The optimum portfolio composed from sites 
within the whole system is 28% less variable than the optimum 
portfolio from the least variable individual region (ERCOT). 

 
Figure 6 also illustrates that the amount of time in which the 
expanded region portfolio produces no power is 
significantly less than all individual regions. Specifically, 
the expanded region produces no power for only 6 hours out 
of the whole year (0.068% of the time), whereas the best 
individual region (ERCOT) produces no power for 16 hours 
out of the year, and the average individual region produces 
no power for 90 hours out of the year. This represents a 62% 
and 93% improvement, respectively. 
 
Furthermore, the expanded region has a lower chance of 
producing less than 12 MW or more than 47 MW than any 
individual region. For utilities, this represents a lower risk 
of power shortages or spikes, and therefore a lower cost of 
integrating wind on a large scale. In the expanded region, 
the maximum power output for 2004 was 76 MW, vs. 93 
MW for the best individual region (ERCOT) and 98 MW 
for the average individual region. Intelligent geographic 
distribution therefore facilitates higher wind penetration 
rates by reducing the risk and intensity of supply spikes. 
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Fig. 5: Output histogram for the expanded system5.  A curve that is 
narrower and shifted more to the right has less variability and 
higher power output, respectively. 

5.3 Relative Contribution of Wind vs. Solar 
Combining 16 solar sites with the wind sites from Hansen & 
Levine (2008) produced a wind/solar optimized portfolio 
with 18% lower variability than the optimized wind 
portfolio alone. The added resource diversity also raised 
80/90/95/99% availability from 12/8/6/3 MW to 15/11/8/4 
MW. In the “bin of greatest return” (bin 15) of the expanded 
region optimized portfolio, approximately 80% of capacity 
was apportioned to wind and 20% to solar. In general, solar 
is more prominent in portfolios with higher power output 
and greater variability.  This is due to the fact that solar sites 
tend to have higher average power outputs than wind sites, 
but also higher variability because they produce no power at 
night. 

 
                                                             
5 Like the output duration curve, the output histogram must be 
calculated for a specific “bin” along the output vs. variability 
curve. In this graph, the whole system histogram is calculated for 
bin 15, and the individual system histograms are calculated for 
bins with an equivalent power output.  In addition, these are 
discrete histogram functions divided into 20 bins between .0001 
and .9999, with 2 additional bins for 0 and 1– the dots are 
connected for better readability. 

Fig. 6: Relative contribution of wind and solar to total capacity in 
the expanded region optimized portfolio.  Solar sites have higher 
power output but greater variability than wind sites, and therefore 
tend to be favored in higher bins. 

6 CONCLUSIONS 

This study has two conclusions: (1) for this example, 
extending the period of study from 1 year to 3 years has no 
significant impact on the variability or power output of a 
geographically distributed wind-solar portfolio, so long as 
the 1-year analysis is conducted for a year with relatively 
normal weather.  (2) Expanding the geographic area of the 
study from 1 reliability region to 3 produces significant 
decreases in variability, thereby facilitating higher 
penetrations of wind and solar power in utility portfolios. 

7 SOLAR AND WIND IN A NEXT GENERATION 
UTILITY 

While geographical dispersion of variable resources and the 
combination of different variable resources can significantly 
reduce portfolio variability, the remaining variability must 
be managed in order to balance demand and supply on the 
hourly, minute, and second scales.  
 
This balancing currently occurs through the use of 
automated generation control and ancillary services. 
However, with greatly increased penetrations of variable 
renewables, more flexible capacity will be required. Given 
advances in communications and control technologies, 
much of this remaining variability could be met effectively 
through the dynamic use of: 
 
• Responsive Loads—demand response has traditionally 

been used to clip and shift on-peak demand to off-peak 
periods in order to defer building new generation 
capacity. Increasing the magnitude and duration of 
demand response contributes to controlling absolute 
demand growth. Furthermore, developing demand 
response techniques that can operate at more than just 
peak periods should allow demand response to provide 
ancillary grid services and help manage renewable 
variability. Previous pilot projects in California and 
Nevada have shown that automated technologies with 
two-way digital communications can successfully drive 
demand response; 
 

• Energy Storage— powerful system performance 
synergies can be derived from the integration of the 
electric and transportation sectors through the use of 
plug-in hybrid electric vehicles and full electric 
vehicles. For the electric utility, PHEVs and EVs 
(collectively xEVs) offer responsive off-peak load, the 
potential for dispatchable on-peak capacity from 
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vehicle-to-grid (V2G) connections, and the prospect of 
economic electric storage, since the high capital costs 
of batteries would be shared with drivers; and  

 
• Intelligent Grid Communications—Increased use of 

responsive load and xEVs requires advanced grid 
communications technologies. Utilities must be able to 
communicate in real-time with loads and xEVs to make 
most effective use of the firming capabilities of those 
resources. Such capabilities are being explored in on-
going research into “smart grid” technologies. 

8 NEXT STEPS 

To expand and enhance this analysis for incorporation into 
the next generation utility concept, there are several 
additional elements of analysis that will be addressed, 
including: 
 
• Other geographic areas—this analysis covers only the 

Midwest Reliability Organization (MRO), Southwest 
Power Pool (SPP), and Electric Reliability Council of 
Texas (ERCOT).  Future studies will conduct an 
independent analysis of the Western Electric 
Coordinating Council (WECC), so long as an adequate 
quantity of wind data can be obtained. Once this region 
has been analyzed, the majority of good wind and solar 
sites within the continental United States will have been 
addressed. 

 
• Match to load shape—as discussed at the beginning of 

this paper, renewable resource variability is only 
important in the context of system load. Therefore, a 
complete analysis includes the covariance of 
renewables with load over the same time period. This 
type of analysis, frequently referred to as the effective 
load carrying capability (ELCC) of a renewable 
resource, is dependent in part on the ability to acquire 
accurate hourly load data and more information on the 
loss of load probability (LLP) of current utility systems. 

 
• Integration with demand-side resources—finally, the 

next generation utility project will analyze the 
interactions between variable renewable resources and 
demand-side resources, including responsive load and 
xEVs. The ability of these resources to manage 
renewable variability largely depends on the duration 
and possible rate of change of each resource. 

 
• Economic drivers—the viability of the next generation 

utility concept is dependent on the cost-effectiveness of 
the system and its components. The theory put forward 
in this paper is that the intelligent combination of 
resources can reduce the cost of the portfolio. However, 
this and other economic drivers, including the cost of 

various technologies and of the transmission capacity 
needed to connect them, must be explicitly addressed. 
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