Green building experts encourage project teamwork to promote an open exchange of ideas and generate integrated, whole-system solutions. In the conventional, linear development process, key people are often left out of decision-making or brought in too late to make a full contribution. Collaboration, on the other hand, can reduce and sometimes eliminate both capital and operating costs while at the same time meeting environmental and social goals.

The goal of green building is not to squeeze energy-efficiency features into a tight development budget. The goal, rather, is to analyze such interconnected issues as site and building design, energy and water efficiency, resource-efficient construction, lighting and mechanical design, and building ecology, and optimize all these aspects in an integrated design. Features that might have higher individual costs (e.g., better windows) may actually reduce the whole building cost because other elements such as the heating system can be downsized or eliminated. In order to capture the multiple benefits of synergistic design elements, the building must be evaluated as a whole, not “value-engineered” item by item.

The U.S. Green Building Council’s LEED (Leadership in Energy and Environmental Design) rating system for new and existing commercial, institutional, and high-rise residential buildings is a tool to evaluate environmental performance from a “whole-building” perspective over a building’s life cycle, providing a definitive standard for what constitutes a green building. The Council has asserted that a LEED-Silver-rated building should not cost more than a conventional building. (LEED Platinum does typically cost more because it may involve cutting edge technologies and levels of performance that are far above and beyond standard construction.)

Why Build Green? Case Studies

Many of the Olympic homes have roof-integrated photovoltaic systems, each generating 1 kW of electricity.

Office Environment (continued)

conventional mechanical systems. The displacement air system, in combination with the daylighting, improved building envelope, and task lighting/ambient lighting design has led to a 50 percent reduction in energy use compared to conventional office buildings in the region. Despite this significantly better performance, the building was built at regional market average cost for Class A office space.
The ING (formerly NMB) Bank in Southeast Amsterdam, Netherlands was completed in 1987 with two mandates. The first was that the design would be “organic,” full of light, water features, art, and happy workers. The second mandate was that the building would not cost one guilder more than conventional construction. The headquarters accomplished both mandates and much more.

The building featured an integrated design team process, passive solar heating and ventilation, daylighting, water-efficient landscaping, and rain-water capture. ING bank has seen a 90 percent reduction in energy used when compared to a conventional building of similar size, resulting in $2.9 million in annual savings. The energy efficiency features themselves were paid back in just three months.

ING has since grown to become one of the largest banks in the Netherlands.

Cultural Restoration

The Inn of the Anasazi, in Santa Fe, New Mexico is located adjacent to the historic Palace of the Governors in what used to be a steel and concrete, international-style juvenile detention center and office building for the State Penitentiary.

Remodeled in 1991, the building is now a 60-room luxury resort hotel. The well-drafted adobe design reflects the diverse cultures of the Southwest with locally-sourced, non-toxic building materials. The hotel has forged extensive connections to the community by supporting local artist palms and organic Hispanic farmers (they supply 90 percent of the restaurant’s produce) and by offering conference space for local dispute resolution.

The development team’s attention to environmental and community issues has boosted the performance of the Inn and its restaurant by 15–20 percent. The value of the Inn increased by more than $2 million in less than three years with the help of an 83 percent average occupancy rate.

Office Environment

The SC Johnson Worldwide Professional Building in Racine, Wisconsin was occupied in the summer of 1997. This building exemplifies exceptional performance using commercially available equipment and technologies. The值 23,234-square-foot headquarters contains offices, laboratories, meeting rooms, and dining facilities.

Rather than contribute to urban blight and sprawl, a redevelopment in Vancouver, British Columbia used the site of a former car lot to create a mixed-use retail, office, and apartment space. The project, 2211 West 4th Street, is a four-story building with retail space on the ground floor, office space on the second floor, and residential apartments on the upper floors.

The stores chosen to fill the spaces provide services that were missing in the existing neighborhood, and the building currently operates with a 40-percent energy savings.

The majority of the thermal energy for the building is provided via a ground source heat pump, a saving passed on to tenants. Waste heat (from the restaurant and grocery store) is used to preheat domestic water for the residences above. Perhaps the most intriguing benefit is the positive press that the project received during design and construction that led to 85 percent of the spaces being either pre-leased or pre-sold before completion.

Perhaps the most intriguing benefit is the positive press that the project received during design and construction that led to 85 percent of the spaces being either pre-leased or pre-sold before completion. This resulted in several hundred thousand dollars in marketing cost savings.

Cultural Restoration

The Inn of the Anasazi, in Santa Fe, New Mexico is located adjacent to the historic Palace of the Governors in what used to be a steel and concrete, international-style juvenile detention center and office building for the State Penitentiary.

Remodeled in 1991, the building is now a 60-room luxury resort hotel. The well-drafted adobe design reflects the diverse cultures of the Southwest with locally-sourced, non-toxic building materials. The hotel has forged extensive connections to the community by supporting local artists and organic Hispanic farmers (they supply 90 percent of the restaurant’s produce) and by offering conference space for local dispute resolution.

The development team’s attention to environmental and community issues has boosted the performance of the Inn and its restaurant by 15–20 percent. The value of the Inn increased by more than $2 million in less than three years with the help of an 83 percent average occupancy rate.

Extensive use of computer and physical models created optimal daylighting conditions throughout the building. The facility also uses a raised access floor for both wiring and air distribution. A pressurized underground air plenum delivers cool air low into the space, displacing warm stale air, which is exhausted at the ceiling. This displacement ventilation ensures that all the air in the space is replaced (improving indoor air quality), provides more even temperatures, eliminates drafts, and uses substantially less energy than...
The energy efficiency features themselves of the ING bank were paid back in just three months.

Perhaps the most intriguing benefit is the positive press that the project received during design and construction that led to 85 percent of the spaces being either pre-leased or pre-sold before completion.

The Green Highrise
The Condé-Nast Building at Four Times Square, New York, New York, is the first large-scale speculative office building in the United States to be marketed as green. The 47-story office tower is designed with attention to energy efficiency, indoor air quality, and material selection. Four Times Square has photovoltaics integrated into the building’s spandrel glass, producing significant power on hot summer afternoons—the time of peak electrical demand in New York City. Other green technologies include gas absorption chillers and fuel cells for power generation.

The 1.6-million-square-foot building was part of an experiment run by Rocky Mountain Institute, The Energy Foundation, and Eley & Associates on energy-related performance-based compensation. In this system, the design team shares in the energy savings if they design a higher-performance building. The development team is also working with lead tenants on measures that can improve the energy and environmental performance of their interior improvements. The high-quality, high-performance green building was largely pre-leased before construction was completed.

The energy efficiency features themselves of the ING bank were paid back in just three months.

Perhaps the most intriguing benefit is the positive press that the project received during design and construction that led to 85 percent of the spaces being either pre-leased or pre-sold before completion.

Why Build Green? Case Studies

Single Family, Residential Construction
The ACT House in Davis, California integrated a whole-system design into a residential construction project, cutting energy use by more than 75 percent. Completed in 1992, the home looks like a typical single family dwelling, but is entirely passively heated and cooled. The project combined a number of efficiency measures that allowed for the elimination of the major mechanical equipment—furnace, air conditioning, and some building infrastructure. The performance of the home was not compromised, as the home stayed cooler than surrounding residences during a week of temperatures greater than 100 degrees.

The Denver Dry Goods Building in downtown Denver, Colorado is a mixed-use project that includes retail, office, and both affordable and market-rate housing. Located on a site that has access to mass transit, the project re-used an existing building and focused on energy- and water-efficient design.

The project leased all housing units within six months of opening, pre-leased all office and retail, and saved $96,000 due to a substantial amount of press. Most valuable of all, the bank saw a significant increase in worker productivity, with absenteeism dropping 15 percent. ING has since grown to become one of the largest banks in the Netherlands.

The majority of the thermal energy for the building is provided via a ground source heat pump, a saving passed on to tenants. Waste heat (from the restaurant and grocery store) is used to preheat domestic water for the residences above. Perhaps the most intriguing benefit is the positive press that the project received during design and construction that led to 85 percent of the spaces being either pre-leased or pre-sold before completion. This resulted in several hundred thousand dollars in marketing cost savings.

The building uses 50 percent less energy than conventional office buildings in the region.

Urban Redevelopment
Rather than contribute to urban blight and sprawl, a redevelopment in Vancouver, British Columbia used the site of a former car lot to create a mixed-use retail, office, and apartment space. The project, 2211 West 4th Street, is a four-story building with retail space on the ground floor, office space on the second floor, and residential apartments on the upper floors. The stores chosen to fill the spaces provide services that were missing in the existing neighborhood, and the building currently operates with a 40-percent energy savings.

The majority of the thermal energy for the building is provided via a ground source heat pump, a saving passed on to tenants. Waste heat (from the restaurant and grocery store) is used to preheat domestic water for the residences above. Perhaps the most intriguing benefit is the positive press that the project received during design and construction that led to 85 percent of the spaces being either pre-leased or pre-sold before completion. This resulted in several hundred thousand dollars in marketing cost savings.

The building uses 50 percent less energy than conventional office buildings in the region.

The value of the Inn increased by more than $2 million in less than three years with the help of an 83 percent average occupancy rate.

Cultural Restoration
The Inn of the Anasazi, in Santa Fe, New Mexico is located adjacent to the historic Palace of the Governors in what used to be a steel and concrete, international-style juvenile detention center and office building for the State Penitentiary. Remodeled in 1991, the building is now a 60-room luxury resort hotel. The well-designed adobe design reflects the diverse cultures of the Southwest with locally-sourced, non-toxic building materials. The hotel has forged extensive connections to the community by supporting local artisans and organic Hispanic farmers (they supply 90 percent of the restaurant’s produce) and by offering conference space for local dispute resolution.

The development team’s attention to environmental and community issues has boosted the performance of the Inn and its restaurant by 15–20 percent. The value of the Inn increased by more than $2 million in less than three years with the help of an 83 percent average occupancy rate.

The Inn of the Anasazi, in Santa Fe, New Mexico is located adjacent to the historic Palace of the Governors in what used to be a steel and concrete, international-style juvenile detention center and office building for the State Penitentiary. Remodeled in 1991, the building is now a 60-room luxury resort hotel. The well-designed adobe design reflects the diverse cultures of the Southwest with locally-sourced, non-toxic building materials. The hotel has forged extensive connections to the community by supporting local artisans and organic Hispanic farmers (they supply 90 percent of the restaurant’s produce) and by offering conference space for local dispute resolution.

The Inn of the Anasazi, in Santa Fe, New Mexico is located adjacent to the historic Palace of the Governors in what used to be a steel and concrete, international-style juvenile detention center and office building for the State Penitentiary. Remodeled in 1991, the building is now a 60-room luxury resort hotel. The well-designed adobe design reflects the diverse cultures of the Southwest with locally-sourced, non-toxic building materials. The hotel has forged extensive connections to the community by supporting local artisans and organic Hispanic farmers (they supply 90 percent of the restaurant’s produce) and by offering conference space for local dispute resolution.

The building uses 50 percent less energy than conventional office buildings in the region.

Office Environment
The SC Johnson Worldwide Professional Building in Racine, Wisconsin was occupied in the summer of 1997. This building exemplifies exceptional performance using commercially available equipment and technologies. The 23,234-square-foot headquarters contains offices, laboratories, meeting rooms, and dining facilities.

The building uses 50 percent less energy than conventional office buildings in the region.

Educational Environment
Oberlin College’s Adam J. Lewis Center for Environmental Studies serves as both an example of a building of the future and a tool for teaching students. The 10,000-square-foot building is located in Northern Ohio and features extensive daylighting, use of photovoltaics, and a “living machine” for biological wastewater treatment. The eventual goal of the project is to be a “net-exporter” of energy, by capitalizing on energy-efficient design and power production within the facility. The building was designed to be responsive to its surrounding climate and landscape, and to be capable of evolving over time as technologies advance.

The building uses 50 percent less energy than conventional office buildings in the region.

The Condé-Nast Building at Four Times Square, New York, New York, is the first large-scale speculative office building in the United States to be marketed as green. The 47-story office tower is designed with attention to energy efficiency, indoor air quality, and material selection. Four Times Square has photovoltaics integrated into the building’s spandrel glass, producing significant power on hot summer afternoons—the time of peak electrical demand in New York City. Other green technologies include gas absorption chillers and fuel cells for power generation.

The 1.6-million-square-foot building was part of an experiment run by Rocky Mountain Institute, The Energy Foundation, and Eley & Associates on energy-related performance-based compensation. In this system, the design team shares in the energy savings if they design a higher-performance building. The development team is also working with lead tenants on measures that can improve the energy and environmental performance of their interior improvements. The high-quality, high-performance green building was largely pre-leased before construction was completed.

The building uses 50 percent less energy than conventional office buildings in the region.

Office Environment
The SC Johnson Worldwide Professional Building in Racine, Wisconsin was occupied in the summer of 1997. This building exemplifies exceptional performance using commercially available equipment and technologies. The 23,234-square-foot headquarters contains offices, laboratories, meeting rooms, and dining facilities.

The building uses 50 percent less energy than conventional office buildings in the region.

The building uses 50 percent less energy than conventional office buildings in the region.

Educational Environment
Oberlin College’s Adam J. Lewis Center for Environmental Studies serves as both an example of a building of the future and a tool for teaching students. The 10,000-square-foot building is located in Northern Ohio and features extensive daylighting, use of photovoltaics, and a “living machine” for biological wastewater treatment. The eventual goal of the project is to be a “net-exporter” of energy, by capitalizing on energy-efficient design and power production within the facility. The building was designed to be responsive to its surrounding climate and landscape, and to be capable of evolving over time as technologies advance.
Green building experts encourage project teamwork to promote an open exchange of ideas and generate integrated, whole-system solutions. Collaboration, on the other hand, can reduce and sometimes eliminate both capital and operating costs while at the same time meeting environmental and social goals. In addition, the process of creating these multiple benefits of synergistic design elements, the building must be evaluated as a whole, not “value-engineered” item by item.

Many players in the real estate market are realizing that green development is good business. Developers, builders, and buyers are discovering that “green” enhances not only health and quality of life, but also the pocketbook.

The goal of green building is not to squeeze energy-efficiency features into a tight development budget. The goal, rather, is to analyze such interconnected issues as site and building design, energy and water efficiency, resource-efficient construction, lighting and mechanical design, and building ecology, and optimize all these aspects in an integrated design. Features that might have higher individual costs (e.g., better windows) may actually reduce the whole building cost because other elements such as the heating system may be downsized or eliminated. In order to capture these multiple benefits of synergistic design elements, the building must be evaluated as a whole, not “value-engineered” item by item.

The U.S. Green Building Council’s LEED (Leadership in Energy and Environmental Design) rating system for new and existing commercial, institutional, and high-rise residential buildings is a tool to evaluate environmental performance from a “whole-building” perspective over a building’s life cycle, providing a definitive standard for what constitutes a green building. The Council has asserted that a LEED-Silver-rated building should not cost more than a conventional building. (LEED Platinum does typically cost more because it may involve cutting edge technologies and levels of performance that are far above and beyond standard construction.)

Why Build Green? Case Studies

Environmental Communities

Village Homes in Davis, California is a green, planned residential community of single family detached homes and apartments built in 1981. The 70-acre development also includes 12 acres of greenbelts and open space, 12 acres of common agricultural land, and 4,000 square feet of commercial office space. Designed to take maximum advantage of the sun, the annual household bills are one-half to one-third lower than in surrounding neighborhoods.

Natural drainage systems on site saved $800 per lot and proved more effective for handling stormwater. Narrow streets reduced the amount of pavement needed, lowered ambient air temperature by 15°, increased pedestrian safety, and allowed for future reductions in the cost of repair and maintenance. Edible landscape, pedestrian walking paths, and bike trails also proved popular with residents.

The original investors of Village Homes have made a profit of 30 percent per year. In 1995, homes sold for $10–$25 per square foot higher than market rate. They continually have a low turnover rate and sell faster than is typical for the region.

A green building project does not have to cost more up front. In fact, building green often costs less. Careful “front-loaded” planning and design can pay for itself—with interest—in avoided downstream costs such as elaborate mechanical systems, expensive redesigns, drawn-out approvals, litigation, and stalled construction.

The goal of green building is not to squeeze energy-efficiency features into a tight development budget. The goal, rather, is to analyze such interconnected issues as site and building design, energy and water efficiency, resource-efficient construction, lighting and mechanical design, and building ecology, and optimize all these aspects in an integrated design. Features that might have higher individual costs (e.g., better windows) may actually reduce the whole building cost because other elements such as the heating system can be downsized or eliminated. In order to capture these multiple benefits of synergistic design elements, the building must be evaluated as a whole, not “value-engineered” item by item.