

Autocomposites Commercialization Launchpad Kickoff Meeting Pre Read

Troy, MI

June 27, 2013

THANKS FOR ATTENDING THE KICKOFF MEETING FOR THE AUTOCOMPOSITES COMMERCIALIZATION LAUNCHPAD

Findings from post workshop survey:

- Respondents were from across the supply chain: OEMs, Tier 1s, material suppliers, equipment and tooling suppliers, government, universities, national labs, and industry consultants.
- 18 of 21 respondents indicated they are "very interested" in a carbon fiber composite part commercialization effort
- Respondents were willing to contribute to the effort:
 - ➡ 14 said they could support with in-kind equipment, material, or labor
 - 3 said they could support with a direct financial contribution

THE MEETING WILL BUILD FROM WORKSHOP OUTCOMES AND FOCUS ON A PATHWAY TO COMMERCIALIZATION

Phase-gate Development Process:

1	Produce a commercialization plan based on the part development process
2	Identify and address technology and funding gaps on the pathway to part implementation on a model year 2018 vehicle at 50k units per year or more.
3	Identify and assign initial team roles and responsibilities and develop a plan to bring a large Tier 1 or OEM on board.

Pre Read Table of Contents

- 1. Vision for Collaboration
- 2. Summary of the Parts Approach
- 3. Key Questions

Pre Read Table of Contents

1. Vision for Collaboration

- 2. Summary of the Parts Approach
- 3. Key Questions

A COLLABORATIVE APPROACH WITH STAKEHOLDERS FROM ACROSS THE SUPPLY CHAIN CAN OVERCOME BARRIERS TO COMMERCIALIZATION

Tier I	OEM	
<u>Contribution:</u> • Guidance: production part d <u>Value Derived:</u> • Access to a scale-capable su	pplications	
 Tooling Providers <u>Contribution:</u> Manufacturing equipment & e <u>Value Derived:</u> Develop and demo equipment customer-driven environment 	CAE Software Provider Contribution: • Predictive tools & expertist inValue Derived: • Develop and demo analysis for specific large-scale appli	Potential roles to be discussed at meeting
Fiber + Resin Producers <u>Contribution:</u> • Material systems & expertise <u>Value Derived:</u> • Access to growth market	Gov't / DOE / ORNL <u>Contribution:</u> • Active collaboration with cuprograms (NNMI,VTP, CFTF <u>Value Derived:</u> • Fossil fuel reduction goals a • U.S. manufacturing competit	irrent -) dvancement tiveness

KEY TECHNOLOGY AND FUNDING GAPS CAN BE IDENTIFIED BY UNDERSTANDING THE OEM PRODUCTION PART APPROVAL PROCESS (PPAP)

THE AUTOCOMPOSITES SUPPLY CHAIN WILL NEED TO WORK TOGETHER TO COVER UP FRONT COSTS ON THE PATH TO COMMERCIALIZATION

Estimated Program Cost (thousand \$)

Pre Read Table of Contents

1. Vision for Collaboration

2. Summary of the Parts Approach

3. Key Questions

A FEW PARTS, IMPLEMENTED AT MAINSTREAM VOLUME, CAN DRIVE SIGNIFICANT SCALE AND INVESTEMENT WHILE PAVING THE WAY FOR COMPOSITE-INTENSIVE VEHICLES

THE PARTS APPROACH FOCUSES ON NEAR TERM COMMERCIALIZATION WHILE MAKING BARRIERS TO CF ADOPTION TANGIBLE

The parts approach can turn the laundry list of barriers to CF adoption into a strategic, concrete list of near-term deliverables.

THE PARTS APPROACH OFFERS A STARTING POINT TOWARD CAPTURING THE FULL VALUE OF **CF** IN THE LONGER TERM

*Includes both (left and right) door

WE EXPLORED THE PARTS APPROACH IN A WORKSHOP SETTING WITH STAKEHOLDERS ACROSS THE AUTCOMPOSITES SUPPLY CHAIN

CRITERIA WERE DEVELOPED TO SELECT THE RIGHT PART, SEGMENT, MATERIAL SPECIFICATION, AND VOLUME

Criteria:

- High weight reduction potential
- Stiffness-driven
- Part count reduction
- Tangible customer value
 - Safety potential
 - Space savings
 - Ease of use
- Manufacturable at scale with current/forthcoming processes
- Avoids near-term safety challenges
- Readily adapted to additional models and platforms

Part Candidates

- Rear hatch inner
- Door inner + intrusion beam (van/cargo van in particular)
- Seat structure (stowaways in particular)
- Engine cradle

Segments

- Performance
- EVs
- Fleets

Material

Large tow, non-cosmetic

Volume

 50–100k w/ integration into existing plants

INITIAL RESULTS SUGGEST THAT WELL-CHOSEN **CF** COMPOSITE PARTS OFFER EQUAL OR BETTER VALUE RELATIVE TO THE STEEL PARTS THEY WOULD REPLACE

*For EVs, 3yr fuel saving block will be reduced by two thirds, however roughly the same amount will be replaced by upfront battery cost savings

COMMERCIALIZATION PROJECTS CAN BOTH BENEFIT FROM AND CONTRIBUTE TO A BROADER COMPOSITES INNOVATION HUB (OR INSTITUTE FOR MANUFACTURING INNOVATION)

COLLABORATION WILL BE KEY. CO-OPETITION AND CO-FUDNING CAN HELP OVERCOME COMPLEX, CROSS-DISCIPLINARY DEVELOPMENT CHALLENGES

1. Complex, crossdisciplinary challenges

2. Decision making interactions across the supply chain

Pre Read Table of Contents

- 1. Vision for Collaboration
- 2. Summary of the Parts Approach

3. Key Questions

COMMERCIALIZATION WILL FACE TECHNOLOGY BARRIERS

- New Material
- New Process
- Complex interactions across the supply chain

Technical Challenges:

- CAE tools
- Assembly
- Finishing
- Cycle times
- Repair & Replacement
- Material data
- Crash safety
- Recyclability

WHERE ARE THE KEY TECHNOLOGY GAPS? HOW AND WHEN CAN THEY BE OVERCOME?

Illustrative

• Do they have enough incentive to invest? Is risk aligned with reward?

HOW WILL THIS EFFORT DIFFER FROM EXISTING INDUSTRY CONSORTIA AND COMMERCIALIZATION-FOCUSED INITIATIVES?

Organization	Country	Participants				Funding Source		Funding Mechanism				Budget (USD Equiv.)	
		Industry	Gov't	Academia	Non- profit	Public	Private	Grants	Cost-Sharing	Membership Fees	Contracts		
Automotive Composites	US	x	v		-	x	x	x	X DOE and OEMs	-	-	n/a	
Consortium (ACC)			^	-				DOE					
National Composites	υк	x	×	×	-	x		x		×	-	38 million	
Center (NCC)			×					British gov't agencies					
	Germany	x	x	x	-	×		X			×	42 million	
Fraunhofer ICT							X	German gov't and EU] -	-			
Aachen Center for Integrated	Cormony	x	v	x	-	x		x		-	-	n/a	
Lightweight Production (AZL)	Cermany						-	German gov't					
Cooperative Research Centre – Advanced Composite	Australia	x	x	x	-		x	X	x	-	-	3.4 million (est.)	
Structures (CRC-ACS)								Australian gov't	1			- ()	
Composite Vehicle Research Center, Michigan State University	US	x	x	x	-	x	-		-	-	-	6.8 million	
European Thermoplastics Automotive Composites Consortium (eTAC)	Netherlands	x	-	-	x	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Composites Innovation Center	Canada	x	x	x	x	x	x	x	-	x	-	n/a	
Affordable Composites for	UK	x	-	-	-	x		X		x	-	1.15 million (est.)	
Lightweight Car Structures (ACOMPLICE)							x	UK Technology Strategy Board					
Advanced Manufacturing	υκ	x					1		X				
Research Centre (AMRC)			X	X	-	X	X	UK Technology Strategy Board	-	×	-	n/a	
Composites at Sheffield	UK	x	x	x		x	x	X		l .	-	n/a	
						1		UK and EU					
The Welding Institute (TWI)	υκ	X	-	X	-	-	X	-	-	X	X	76 million	
National Additive Manufacturing	US	x	x	x	x	x	x	x	50/50 between gov't and members on projects	×	-	70 million with 1 billion proposed	
Innovation Institute (NAMII)								DOE and DOD					
Industry and University Cooperative Research Centers (IUCRCs)	US	x	x	x	x	x	x	x	X NSF	-	-	n/a	

HOW WILL PROGRAM PARTICIPANTS MANAGE IP AND THE TENSION BETWEEN COLLABORATIVE AND COMPETITIVE?

Pre-Competitive

- Collaboratively address shared challenges
- Limited info sharing and guarded discussion
- Access to public funding

Competitive

- Small teams focused on nearterm commercialization
- IP protection and detailed design & development
- No access to public funding

Co-opetition

- At what point will the commercialization effort need to cross into the competitive space?
- What types of agreements will be needed in order to protect information while still driving innovation and progress?

Potential "Road Show" Campaign to recruit an OEM:

