MRMI

State CDR Atlas Methodology – Last Updated 11/5/24

Contributors and Acknowledgements

INTERNAL RMI CONTRIBUTORS

- Project direction and creation: Kyle Clark-Sutton, Isabel Wood, Megan Gross, and Daniel Pike
- Content contributors: Jane Sadler, Gareth Westler, Joaquin Rosas, Selene (Eli) Li, Kaveer Phillip, and Elizabeth Healy
- Subject matter experts: Cara Maesano, Matt Kirley, Rudy Kahsar, Kunal Khandelwal, Gloria See, Charithea Charalambous, Brianne Cangelose, and Hadia Sheerazi
- General reviewers: Annina Sartor, Eli Weaver, François de Rochette, Emily Rogers, and Guy Wohl
- Operational support: Jordan Parsons, Caitlin Beas, Amanda Sessler, and Vera Vinson

EXTERNAL REVIEWERS

RMI acknowledges and thanks the following reviewers:

- Brad Rochlin (Cascade Climate), Jason Hochman (DAC Coalition), Nikhil Neelakantan (Ocean Visions), Vikrum Aiyer, Toby Bryce (OpenAir Collective), Katie Lebling (WRI), Sarah Mastroni (Ocean Visions), Jason Grillo (AirMiners), Nate Walworth, Jimmy Voorhis (Kodama), Chris Neidl, Whit Childs (Woodcache), Sylvain Delerce (Carbon Gap), Nora Cohen-Brown (Charm Industrial)
- Several others who requested to remain anonymous

Introducing the State CDR Atlas

The Gap

States are central to scaling

CDR but are relatively uninformed about CDR opportunities that exist in their state and what policy is needed to advance these opportunities.

CDR companies and investors need a more granular

understanding of policy, infrastructure, and natural resources at the state level to make smart investments.

The Product

Provide an interactive database with insights on all 50 states across 8 CDR approaches, highlighting opportunities and gaps.

Provide resources such as educational information, best **()** practices, and policy case studies to support states.

Provide a central repository of data that companies and states can use as a starting point to develop CDR plans.

The Use

Shed light on possible CDR opportunities for policymakers

Act as a starting point for more detailed deployment planning

Direct policymakers to areas they should further research

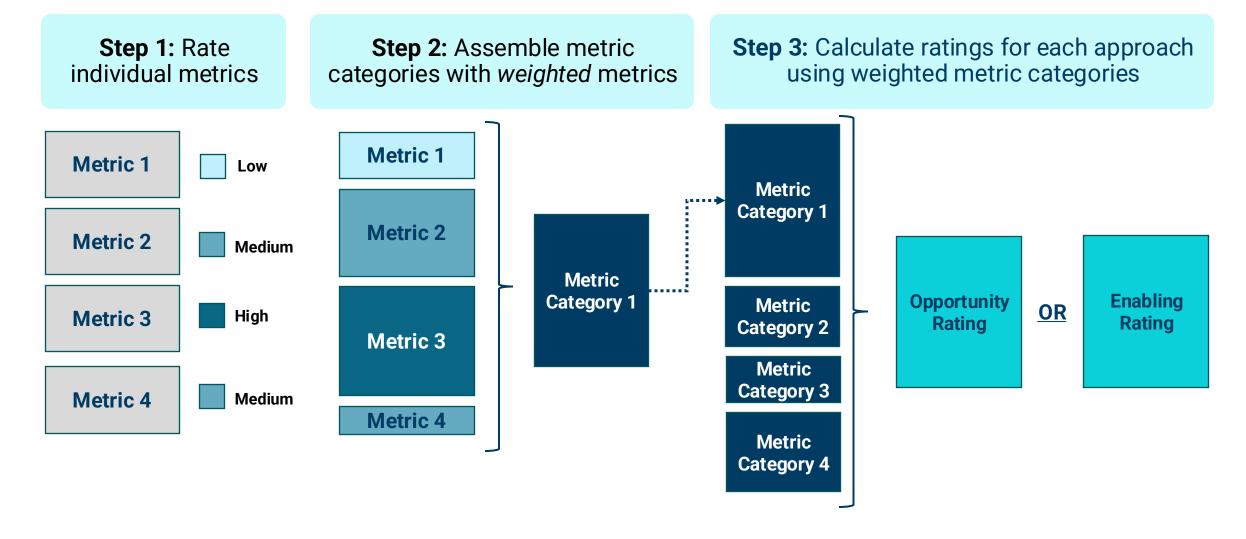
Provide enough information for project developers to identify exact project sites

Disgualify any state from any type of CDR

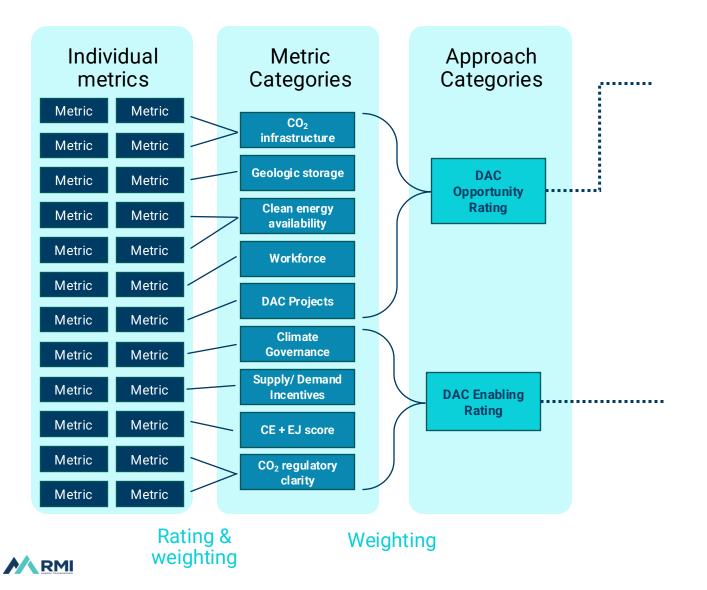
Overview of all metric categories

This table shows 16 metric categories mapped across 8 CDR approach categories. *Enabling* metric categories are intended to capture the state's policy and regulatory environment across nearly 30 metrics. *Opportunity* metric categories capture the infrastructure, natural resources, and existing industrial activity that are relevant to CDR deployment.

#	Enabling or Opportunity	Metric Category	# of metrics	Direct Air Capture	Direct Ocean Capture	Ocean Geochemical CDR	Carbon Mineralization	Terrestrial Enhanced Weathering	Ocean Biomass CDR	Terrestrial Biomass CDR	Bioenergy + CCS
1.0		Climate Governance	5	•	•	•	•	•	•	•	•
2.0		Supply/Demand Incentives	7	•	•	•	•	•	•	•	•
3.0	Enabling	Community Engagement + Environmental Justice Policy	3	•	•	•	•	•	•	•	•
4.0		CO ₂ Regulatory Clarity	9	•	•						•
5.0		Biomass Injection Well Regulatory Clarity	2							•	
6.0		Farm Coverage	3					•			
7.0		Biomass Availability	7						•	•	•
8.0		Coastal Access	2		•	•			•		
9.0		Biomass Injection Well Access	3							•	
10.0		Clean Energy Availability	6	•	•		•				
11.0	Opportunity	Mineral Feedstock Accessibility	3			•	•	•			
12.0		CO ₂ Infrastructure	3	•	•		•				•
13.0		Geologic Storage Potential	3	•	•						•
14.0		Industrial Integration	3		•	•	•				
15.0		Workforce Relevance	Varies	•	•	•	•	•	•	•	•
16.0		Existing CDR HQs / projects	Varies	•	•	•	•	•	•	•	•


Defining CDR approach categories

This table shows how we define our 8 CDR approaches, including how these approach categories map to other taxonomies. The Atlas defines approach categories based on the feedstocks an approach needs, existing industry that it builds on, and policy and regulations that are necessary to help it scale.


CDR APPROACH CATEGORY	RMI AIR Taxonomy ¹	XPRIZE Taxonomy ²	INCLUDED APPROACHES	WHY IS THIS A CATEGORY?
Direct Air Capture	Synthetic CDR	Air	All types of DAC	Requires clean energy as an input and clear carbon management regulations
Capture Rock I		Requires clean energy and clear carbon management regulations, but also access to the coast and clear regulations for ocean deployment		
CDR CDR alkalinity enhancement (in		Coastal enhanced weathering, ocean alkalinity enhancement (including electrochemical alkalinity production)	Requires access to the coast, clear regulations for ocean deployment, and abundant mineral feedstock	
Carbon Mineralization	Geochemical CDR	Rock	Surficial mineralization, ex-situ mineralization	Requires abundant mineral feedstock and an existing industry to capitalize on industrial waste
Terrestrial Enhanced Weathering	Geochemical CDR	Rock, Land	Terrestrial enhanced weathering	Requires abundant mineral feedstock and plenty of appropriate land on which to deploy
Ocean Biomass CDR	Biogenic CDR	Ocean	Macroalgae and microalgae sinking	Requires biomass feedstock, access to the coast, and clear regulations for ocean deployment
Terrestrial Biomass CDR	Biogenic CDR	Land	Biochar, bio-oil, biomass burial, biomass building materials	Requires biomass feedstock and clear regulations for biomass procurement, burying, and/or well injection
Bioenergy + carbon capture and storage	Biogenic CDR	Land	BECCS to fuels, BECCS to electricity	Requires biomass feedstock and clear carbon management regulations

¹RMI's Applied Innovation Roadmap (AIR) delineates CDR methodologies by feedstock. Synthetic CDR relies on clean energy as the main feedstock, geochemical CDR relies on alkaline minerals as the main feedstock, and biogenic CDR relies on sustainable biomass as the main feedstock. ²XPRIZE's taxonomy is split into Rock, Land, Ocean, and Air solutions, based on a project location and inputs.

How Atlas ratings are assembled

Sample Output. Direct Air Capture

Sample Output. Michigan

This sample output shows ratings for Michigan, including opportunity ratings for all 8 CDR approach categories, ratings for enabling and opportunity metric categories, and key insights. Similar outputs will be available for all 50 states in the final State CDR Atlas.

Michigan

State CDR Atlas Summary

KEY INSIGHTS: Michigan...

- Scores high for the opportunity to do carbon mineralization because of existing industry and relevant workforce.
- Scores high for terrestrial enhanced weathering opportunity because of its farm coverage and relevant workforce.
- Scores high for opportunity to do terrestrial biomass CDR because of its residue biomass, injection wells used for bio-oil projects, and relevant workforce.
- May have potential for DAC and bioenergy + CCS, but lack of CO_2 infrastructure is a potential hindrance to these projects.

CDR Approach Category	Opportunity Rating
Direct Air Capture	2.0
Direct Ocean Removal	1.0
Ocean Geochemical CDR	1.0
Carbon mineralization	3.0
Terrestrial Enhanced Weathering (TEW)	3.0
Ocean Biomass CDR*	1.0
Terrestrial Biomass CDR	3.0
Bioenergy + CCS	2.0

Metric Category ENABLING ENVIRONMENT METRICS

Introduction

Climate Governance	1.85
Supply & Demand Incentives	1.20
Community Engagement & Env. Justice	1.60
CO ₂ Regulatory Clarity	1.80
Biomass Injection Well Regulatory Clarity	2.25

OPPORTUNITY METRICS

Farm Coverage	2.30
Biomass Availability – Residue	3.00
Biomass Availability – Energy	2.00
Biomass Availability – Marine	1.00
Coastal Access	0.00
Biomass Injection Well Access	2.70
Clean Energy Availability	1.60
Mineral Feedstock Accessibility	1.30
CO ₂ Infrastructure	1.40
CO ₂ Geologic Storage Potential	2.00
Industrial Integration – Carbon Mineralization	3.00
Industrial Integration – Water Treatment	2.00

Rating

Metric Categories Methodology

1.0. Climate Governance

	TYPE Enabling			• The "Is CDR considered in the state's climate action plan? " and "Does the state have a climate target with political buy-in?" metrics are both						
DESCRIPTION Climate governance metrics assess whether CDR is well- defined in legislation and/or if the state has integrated CDR into existing climate policy frameworks.					weig and prov a fra • For b	phted slightly higher than the "Is t "Is CDR defined in legislation" me ride a mandatory climate target a amework for CDR but are less act binary metrics, a 'Yes' receives 3 re typically having the full policy v	he state climate etrics because th nd planning, whi ionable. points to align w	target ambitious" ne former metrics le the latter provide ith 3-point metrics		
				RATIN	G DETAILS					
#	Metric		Units	Low	Medium	High	Weighting	Data Source		
1.1	Does the state have a climate target with political buy-in?		Multiple qualitative options	No target	Executive TargetRecommended target	 Binding statutory target Executive and statutory target 	30%	<u>Center for</u> <u>Climate and</u> <u>Energy Solutions</u>		
1.2	Is the state	e climate target ambitious?	Multiple qualitative options	No	Yes, but no mention of net zero goal	Yes, with mention of net zero goal (even if eventual)	15%	<u>Center for</u> <u>Climate and</u> <u>Energy Solutions</u>		
1.3	Does the s for remova	state have an explicit target als?	Binary (Yes/No)	No	-	Yes	10%	RMI Analysis		
1.4	Is CDR con climate ac	nsidered in the state's tion plan?	Multiple qualitative options	NA	CAP no CDR	CAP with CDR	25%	<u>Center for</u> <u>Climate and</u> <u>Energy Solutions</u>		
1.5	Is CDR def	fined in legislation?	Binary (Yes/No)	No	-	Yes	20%	RMI Analysis		

2.0. Supply and Demand Policy Metrics

# Metric	different types of policies that CDR indirectly, we decided to c incentivization on both the sup the equation to avoid challeng	only look for direct ply and demand side c	of RATING DETA Low	than \$ one w valual a rout	340/ton PTC). We have weighted th ould be used for CDR. For example ole than a Buy Clean policy that ma e for CDR.	ese metrics based (, a PTC made for Cl	on the certainty that DR is likely more
TYPE DESCRIPTION	DESCRIPTION Supply and demand metrics assess the state that financially encourage the demand of CDR technologies. V		or	Carbo no CD • Speci	policies that must exist within broa In Fuel Standard) receive 2 points f IR incentive. fic features of supply or demand p rful an incentive may or may not be	or having the broad	er program even if ining factors in how

#	Metric	Units	Low	Medium	High	Weighting	Data Source
2.1	Is there a Production Tax Credit (PTC) for CDR?	Binary (Yes/No)	No PTC	-	Yes, PTC	20%	RMI Analysis
2.2	Are there grants available for CDR producers?	Binary (Yes/No)	No Grants	-	Yes, grants	15%	RMI Analysis
2.3	Is there a state buy clean policy with a policy (Yes/No) No state buy clean policy		-	Yes, state buy clean policy with CDR	10%	RMI Analysis	
2.4	Is there state procurement of CDR?	Binary (Yes/No)	No state procurement	-	Yes, state procurement	20%	RMI Analysis
2.5	Is there an Investment Tax Credit (ITC) for CDR?	Binary (Yes/No)	No ITC	-	Yes, ITC	20%	RMI Analysis
2.6	Is there a clean fuel standard with a CDR credit route?	Multiple qualitative options	No clean fuel standard	Clean Fuel Standard, no CDR (or TBD) pathway	Clean Fuel Standard with CDR pathway	7.5%	RMI Analysis
2.7	Is there a cap-and-trade program with a CDR offset route?	Multiple qualitative options	No cap-and-trade	Cap-and-trade, no CDR pathway	Cap-and-trade with CDR pathway	7.5%	RMI Analysis

2.0. Supply and Demand

3.0 Community Engagement and Env. Justice

	ТҮРЕ	Enabling		NOTE			e the prioritization of EJ in other state legislation			
DE	SCRIPTION	Community engagement and enviro metrics assess how ready a state is community supported, equitable CI state prioritizes community engage environmental justice in its legislati	s to scale safe,)R, given how much a ment and		 engagem Commun metrics c commun 	metrics do not cover this level of nuance nor whether specific communities support CDR or not.				
				RATING DETAIL	LS					
#	Metric		Units	Low	Medium	High	Weighting	Data Source		
		ne state have an environmental Y/N requirement?		No		Yes		RMI Analysis		
3.1		environmental review include e burdens, EJ, and/or env.	Multiple qualitative options	NA (no environmental review)	Environmental review but no consideration of cumulative burdens/EJ	Environmental review with consideration of cumulative burdens/EJ	60%	RMI Analysis		
3.2	Does the s	state have an EJ definition?	Multiple qualitative options	No or N/A	Yes, implicit definition	Yes, explicit definition	20%	<u>ClimateXChange,</u> <u>Vermont Law School</u>		
3.3		state have dedicated EJ staff?	Multiple qualitative	Neither	Either an advisory body or dedicated	Both dedicated staff and an	20%	<u>ClimateXChange</u> ,		
	Does the s	state have an EJ advisory body?	Options		staff	advisory body		Vermont Law School		

13

4.0. CO₂ Regulatory Clarity

YPE	Enabling
-----	----------

DESCRIPTION

Legal clarity in CO_2 regulations fosters an enabling environment for developers by providing clear and consistent guidelines. This ensures projects comply with laws and regulations, mitigating the risk of legal disputes and penalties and facilitating project planning and execution.

- Whether a state has adopted laws to clarify specific legal terms regarding CO₂ is not an assessment of the measure or approach taken.
 - With the maturity of the CO₂ market and the adoption of more regulations and laws, it would be necessary to evaluate these measures to provide a more specific and valuable assessment of the readiness of each state.

		RATI	NG DETAILS				
#	Metric	Units	Low	Medium	High	Weighting	Data Source
4.1	Pore space rights: owner type	Binary(Y/N)	Undecided		Surface/Mineral	10%	<u>MIT, GPI</u>
4.2	Is there regulatory clarity on pore space utilization?	Binary(Y/N)	No		Yes	10%	<u>MIT, GPI</u>
4.3	Primacy of minerals with regard CCS	Binary(Y/N)	No		Yes	10%	<u>MIT, GPI</u>
4.4	Long term liability: Post-closure transfer to state	Binary(Y/N)	No		Yes	10%	<u>MIT, GPI, NP</u>
4.5	Long term liability: CO2 trust fund	Binary(Y/N)	No		Yes	10%	<u>MIT, GPI</u>
4.6	UIC primacy - Class VI ^{1, 2}	Multiple qualitative options	No	In Process	Yes	20%	EPA
4.7	States participating in PHMSA's cooperative pipeline safety program ³	Multiple qualitative options	No	Agreement	Certification	10%	<u>PHMSA, Pipeline</u> Safety Trust
4.8	CO2 pipelines: Identified in state statute? ⁴	Binary(Y/N)	No		Yes	10%	<u>NARUC, Columbia</u>
4.9	CO2 pipelines: General permitting requirements?	Binary(Y/N)	No	-	Yes	10%	

NOTES

¹Although states without Class VI primacy can still have wells permitted through the EPA, timelines for permitting tend to be shorter when a state has primacy, as shown in <u>North Dakota and</u> <u>Wyoming</u>. ²States with Class VI primacy were rated 3, or high; states in the process of obtaining primacy were also rated high but scored 2.5; states where the EPA has primacy were rated medium, or 2. No states were rated low because the EPA can still permit wells. ³PHMSA, through this program, certifies state agencies to enforce PHMSA's safety standards. Definitions for "certification" and "agreement" are included <u>here</u>. ⁴Since CO₂ does not fall under oil, gas, or hazardous liquid (as H₂), it is critical for states to add CO₂ explicitly into their statutes.

5.0. Biomass Injection Well Regulatory Clarity

ТҮРЕ	Enabling	NOTES	•	Some examples of biomass injection include bio-oil injection and
DESCRIPTION	These metrics assess how ready a state is to regulate the injection of biomass as a form of carbon storage.		•	biomass slurry injection. Primacy for Class II wells is weighted lower than Class V wells because while primacy is helpful when converting Class II to Class V wells, Class V wells are more useful in biomass injection projects.

			RATING DETAILS				
#	Metric	Units	Low	Medium	High	Weighting	Data Source
5.1	UIC primacy - Class II ¹	Y/N	-	No	Yes	25%	EPA
5.2	UIC primacy - Class V ¹	Y/N		No	Yes	75%	EPA

DATING DETAIL O

6.0. Farm Coverage

ТҮРЕ	Opportunity	NOTES	 Metric 6.3 is included since terrestrial enhanced weathering (TEW) can
DESCRIPTION	These metrics assess the potential of state to deploy CDR approaches that are reliant on the presence of farmland or a farming industry.		 be used for pH soil management. Ratings are based on the cutoff for acidic pH (pH<7) and state averages (pH=6.10). Ratings for metrics 6.1 and 6.2 based on state percentiles (33rd, 66th).

		RATING DETAILS					
#	Metric	Units	Low	Medium	High	Weighting	Data Source
	Land in farms	1000 acres	U	sed for metric calculati		USDA	
	Land in farms	Acres	Us	sed for metric calculati	on	400	USDA
6.1	Land in farms	Square miles	40% Used for metric calculation				USDA
	% Farm coverage	% total state coverage	<26%	26%-44%	>44%		Census Bureau
6.2	State receipts for all agricultural commodities	Real 2024 USD	<\$4B	\$4B-\$12B	>\$12B	25%	USDA
6.3	Average soil pH	Average pH	>7	6.10-7	<6.10	35%	USGS

7.0. Biomass Availability

	ТҮРЕ	E Opportunity			NOTES	• The Billio	n-ton Report models market sce data to show general trends in wh	narios for biomass; see report <u>table ES-1</u> . We nich states will likely have more biomass rather
DE	SCRIPTION	These metrics assess the amount of biomass production in a state and therefore the potential for the state to supply biomass for different forms of CDR.than to show exactly • Macroalgae (seawed state, so other data state, so other data state)• To reflect the opport			how exactly how much biomass gae (seaweed) production in the E other data sources were used. t the opportunity of CDR to reduc sk) were weighted highest for ter	will be available per state. Billion-ton Report was divided by coast, not e wildfires, forest metrics (forest residue and restrial biomass, then agricultural residue, then		
				RA	TING DETAILS			
#	Metric		Units	Low	Medium	High	Weighting ¹	Data Source
7.1	Wastes ² pi	roduction	Dry tons, near-term scenario	<1.7M	1.7M-4.2M	>4.2M	Terrestrial bio - 20%	Billion-ton Report 2023
7.2	Forest ³ res	sidue	Dry tons, near-term scenario	<120k	120k-600k	>600k	Terrestrial bio - 20%	Billion-ton Report 2023
7.3	Agriculture	e ⁴ residue	Dry tons, near-term scenario	<300k	300k-1.7M	>1.7M	Terrestrial bio - 35%	Billion-ton Report 2023
7.4	Wildfire ris	sk	Risk index value	<42.5	42.5-60.6	>60.6	Terrestrial bio - 25%	<u>FEMA</u>
7.5	Energy cro	ps (herbaceous	Dry tons, medium market	<430k	430k-4.6M	>4.6M	BECCS - 100%	Billion-ton Report 2023
	and woody		scenario					
7.6	and woody Seaweed f	•	scenario Active, Permitted, None	None	Permitted	Active	Ocean biomass - 100%	National Sea Grant Seaweed Hub

¹Different types of biomass are relevant to different CDR. Metrics 7.1 through 7.4 inform terrestrial bCDR potential; Metric 7.6 informs industrial bCDR potential; metrics 7.7 through 7.8 inform ocean bCDR potential. ²Wastes production residue includes fats, oils, and grease (FOG), solid waste, wet waste, and paper, all defined by the Billion-ton Report. ³Forest residue includes fire reduction thinnings, forest processing waste, logging residues, and other forest waste, all defined by the Billion-ton Report. ⁴Agriculture residue includes agriculture residues, and agriculture residues, all defined by the Billion-ton Report. the Billion-ton Report.

8.0. Coastal Access¹

	ТҮРЕ	Opportunity			NOTES •			d in this metric category
	DESCRIPTION	These metrics assess not on also how big that coastal area the state to indicate potential approaches.	is in relation to the res	t of	•	 because freshwater CDR is still early stage. These water areas were determined based on Census Bureau definitions.^{2,3} Ratio rather than absolute value of coastal/territorial water area was used to reduce bias for larger states. Metrics about coastal economy were not included because some industries will actively support CDR while others will not. 		ns. ^{2,3} rritorial water area was Ided because some
				RATING DETAILS				
#	Metric		Units	Low	Medium	High	Weighting	Data Source
	Does the s	tate have coastal access?	Y/N	No		Yes		<u>Census Bureau</u>
	Coastal an	nd territorial water area	Square miles		Used for metric o	calculation		<u>Census Bureau</u>
8	1 Total state	e area	Square miles		Used for metric o	calculation	75%	Census Bureau
	Coast/are	a ratio	Unitless (sq. miles/sq. miles)	NA	<50th percen of states with coastal area	•		<u>Census Bureau</u>
8.	2 Significan	t ports	# of ports within top 50 US ports by tonnage	0	1	>1	25%	<u>Bureau of</u> <u>Transportation Statistics</u>

¹This metric category is not a comprehensive measurement for where ocean CDR projects should be deployed. Just having coastal access or large ports does not guarantee conditions will be correct to do ocean CDR. Certain natural metrics such as <u>air-sea gas exchange</u> and other ocean dynamics are important to consider but too granular to include in this Atlas. Similarly, political and environmental metrics such as the presence of <u>Marine Protected Areas</u> will influence project siting but are also too granular to include. ²Census Bureau definitions of Coastal, Inland, Great Lakes, and Territorial waters are explained on page 15-6 of <u>this document</u>. ³Coastal waters were included to account for large bodies of water within a state's coastal area; territorial seas were included to measure the area of ocean in which states have some level of jurisdiction.

9.0. Biomass Injection Well Access

TYPE DESCRIPTION	Opportunity These metrics assess the presence and availability of wells to inject and store biomass slurries/bioliquid underground.	NOTES	•	Ratings are based on averages across the 50 states; Class V wells have higher cutoffs because there are generally more Class V wells in all 50 states. All three metrics are weighted evenly; the datasets for Class II Wells and orphaned wells may have overlap (e.g., Class II Wells that have been abandoned), but together they are weighted higher than Class V Wells because of the opportunity to plug them.
		RATING DETAILS		

#	Metric	Units	Low	Medium	High	Weighting	Data Source
9.1	Class II Wells	# of wells	0	1-70	>70	33%	<u>EPA</u>
9.2	Class V Wells	# of wells	<2731	2731-12787	>12787	33%	EPA
9.3	Orphaned Wells	# of wells	0	1-490	>490	33%	Environmental Defense Fund

10.0. Clean Energy Availability

ТҮРЕ	Opportunity	NOTES	• The increase in planned renewables assumes no new nonrenewable
DESCRIPTION	These metrics asses the availability of near, medium, and long-term clean energy in a state, also considering existing energy burdens.		 production. As a result of this assumption, the metric receives low weighting (10%). Ratings were calculated using 33rd and 66th percentiles.
		DATING DETAILS	

		RATING DETAILS					
#	Metric	Units	Low	Medium	High	Weighting	Data Source
	2022 total statewide energy consumption	MWh		Used for metric calculat	tion		EIA
101	2022 total statewide energy consumption	MW		Used for metric calculation Used for metric calculation		2.0%	EIA
10.1	Installed renewable generation capacity	MW				30%	EIA Energy Atlas
	Percent installed renewables	%	<10.9%	10.9% - 19.6%	>19.6%		RMI Calculation ¹
10.0	Renewable net generation	1000 MWh		Used for metric calculat	tion	2.0%	EIA Electricity Data Browser
10.2	Percent generation in renewables	&	<1.5%	1.5% - 4.3%	>4.3%	30%	RMI Calculation ²
10.0	Planned Renewable Interconnections	MW		Used for metric calculat	tion	1.00/	Lawrence Berkeley Nat'l Lab
10.3	Increase in planned renewables	%	<21.0%	21.0% - 33.4%	>33.4%	10%	RMI Calculation ³
10.4	Renewable interconnection queue approval pace	Months	>40	25-40	<25	10%	Lawrence Berkeley Nat'l Lab
10.5	Renewable generation potential	MWh	<3.3B	3.3B - 7.7B	>7.7B	10%	NREL SLOPE
10.6	Energy burden	%	>7%	4% - 7%	<4%	10%	DOE LEAD Tool

¹Percent installed renewables is calculated by dividing installed renewable generation capacity (MW) by statewide energy consumption in MW. ²Percent generation in renewables is calculated by dividing renewable net generation (MWh) by statewide energy consumption in MWh. ³Increase in planned renewables = ((planned renewable interconnection(MW) + total statewide energy consumption(MW))/(planned renewable interconnections(MW) + total statewide energy consumption(MW))) – percent installed renewables.

RMI

20

11.0. Mineral Feedstock Availability¹

ТҮРЕ	Opportunity	NOTES	 All low ratings indicate the state has no prospect of the mineral either currently being mined or mined in the future. All medium and high ratings
DESCRIPTION	These metrics assess a state's opportunity to mine and supply minerals necessary for different types of gCDR.		 Found or mined minerals include commodities, ore, and gangue.

RATING DETAILS

		RATING DETAILS					
#	Metric	Units	Low	Medium	High	Weighting	Data Source
	Basalt found	# of locations	Sum of mined	Sum of mined and	Sum of mined and		USGS
11.1	Basalt mined	# of locations	and found = 0	found = 1 or 2	found > 2	33%	USGS
11.0	Wollastonite found	# of locations	Sum of mined	Sum of mined and	Sum of mined and	000	USGS
11.2	Wollastonite mined	# of locations	and found = 0	found = 1 through 5	found > 5	33%	USGS
11.3	Olivine found	# of locations	Sum of mined	Sum of mined and	Sum of mined and	33%	USGS
11.5	Olivine mined	# of locations	and found = 0	found = 1 through 10	found > 10	33 %	USGS

¹Because certain industrial processes can produce alkaline feedstock, the Mineral Feedstock Availability metric (11.1, 11.2, 11.3) and the Industrial Integration metric (14.1, 14.2) are related; however, they are separated based on the source of the feedstock. The Mineral Feedstock Availability metric focuses on bulk rock and bulk mineral materials that can be extracted directly for CDR purposes. It includes feedstock used commercially for enhanced weathering on farmland (basalt, olivine, and wollastonite). These metrics are not perfect representations of the minerals that will be available for different types of CDR. This data shows the number of sites, not the amount of available material. Many factors need to be considered to determine if a mining site is appropriate for CDR. We are still searching for data to update this metric category.

12.0. CO₂ Infrastructure

	NOTES	• Facilities that are in development are counted as 0.5 for metric 12.1.
DESCRIPTION These metrics assess the presence of supporting infrastructure for carbon removal projects with a stream of CO_2 including pipelines, wells, and the presence of industry that would increase demand for further buildout of carbon management infrastructure.		

			RATING DETA				
#	Metric	Units	Low	Medium	High	Weighting	Data Source
12.1	CCUS facilities	# of facilities	0	0-1.5	>1.5	20%	CATF CCUS Tracker
12.2	CO ₂ pipelines	Total miles	0	<104.4	>104.4	40%	PHMSA
12.3	Class VI wells	# of wells	0	1	>1	40%	<u>EPA</u>

13.0. CO₂ Geologic Storage Potential

DES	TYPE Opportunity DESCRIPTION These metrics assess the opportunity for a state to store CO2 in geologic formations given the presence of a variety of geologic formations and pore space.		o store	rat • To aq the	ing is determined usi tal storage resource (uifers) is weighted hig	ng percentiles of oil and gas res gher because o	lygon areas in GIS mapping. The of the relative polygon areas. ervoirs, coal storage, and saline f existing efforts to store CO ₂ in tial barriers to using ultramafic	
				RATING [DETAILS			
#	Metric		Units	Low	Medium	High	Weighting	Data Source
13.1	Total stora	age resource	Billion tons	<0.83	0.83-60.68	>60.68	50%	NETL Carbon Storage Atlas
13.2	Ultramafic	c storage	Relative polygon area in GIS	0	< 66th percentile	> 66th percentile	25%	USGS Carbon Mineralization Feasibility Study
13.3	Mafic stor	age	Relative polygon area in GIS	<33rd percentile	33rd - 66th percentile	> 66th percentile	25%	USGS Carbon Mineralization Feasibility Study

14.0. Industrial Integration¹

ТҮРЕ	Opportunity	NOTES	•	Municipal desalination plants and industrial wastewater treatment may be integrated with forms of CDR such as Direct Ocean Capture.
DESCRIPTION	These metrics are used to assess the opportunity for a state to integrate CDR into existing facilities or industries, specifically for carbon mineralization, direct ocean capture, and ocean alkalinity production. These metrics apply to existing industry infrastructure rather than existing workforce.		•	Metric 14.3 only provides data for the 24 states that have SMCRA- approved Abandoned Mine Land Programs.

			RATING DET	AILS			
#	Metric	Units	Low	Medium	High	Weighting	Data Source
14.1	Value of nonfuel mineral production ²	% of US total	<0.74%	0.74%-1.92%	>1.92%	60%	<u>USGS</u>
14.2	Cement production ³	# of facilities	0	1-2	≥2	40%	EPA GHGRP 2022
	Municipal desalination facilities	# of facilities		Sum between 3		Direct Ocean Capture - 100%	Mike Mickley, PhD, 2020
14.3	Industrial wastewater treatment facilities	# of facilities	Sum <3	and 6	Sum >6		EPA GHGRP 2022

¹Because certain industrial processes can produce alkaline feedstock, the Mineral Feedstock Availability metric (11.1, 11.2, 11.3) and the Industrial Integration metric (14.1, 14.2) are related; however, they are separated based on the source of the feedstock. The Industrial Integration metric measures the presence of the mining and cement industries in a state, each of which create by-products that could be used for CDR purposes (mine tailings and cement kiln dust). Not all of these industrial by-products will be suitable for CDR. While materials included in the Mineral Feedstock Availability can be used in enhanced weathering, ocean geochemical CDR, and carbon mineralization, the Industrial Integration metrics 14.1 and 14.2 apply only to carbon mineralization due to environmental risks of applying industrial waste on farmland or to the ocean. ²This metric is the % of the US total value of nonfuel mineral production (e.g., coal is not included). While not all minerals included in this metric can be used for CDR, this metric acts as a proxy both to show which states have the largest mining industries and which states currently benefit the most economically from these industries. ³This metric shows generally which industries are prevalent in which states; however, not every industrial facility will be able to integrate CDR into its functions because of economics, size, etc. This metric is a proxy and further research is needed on an individual facility basis.

15.0. Workforce Relevance

TYPEOpportunityDESCRIPTIONThese metrics assess the presence of a relevant workforce in each CDR bucket per state, which acts as a proxy for the availability of local workers trained in relevant fields.			NOT s a	Total emp across se codes are relevant to	veral NAICS codes for relevant to an approa o ocean bCDR are "wa	combines, rate each CDR buc ch. For exampl ter transportati	on" and "aquaculture."	
			RATING DETA	the ocean	bCDR example below		e methodology shown in	
#	Metric		Units	Low	Medium	High	Weighting	Data Source
15.1	Total en	nployment	# of jobs, December 2023	<33 rd percentile	33rd-66 th percentile	>66 th percentile	100%	BLS
	_							
Example CDR bucket	Ocean b workfor	viomass relevant ce	# of jobs, December 2023, "aquaculture" and "water transportation" NAICS codes	<145	145-763	≥764	100%	<u>BLS</u> – job data for NAICS "aquaculture" & NAICS "water transport"

15.0. Workforce Relevance (Continued)

ТҮРЕ	Opportunity			NOTES •	The table below ma	ps NAICS categories to ea	ch CDR bucket	
DESCRIPTION	These metrics assess the presence of a relevant workforce in each CDR bucket per state, which acts as a proxy for the availability of local workers trained in relevant fields.				 These are 3-digit NAICS categories (except for "Aquaculture" and "Solid Landfills") to provide broad enough categories for what is considered relevant workforce for a bucket of CDR. Numbers in parentheses are the numerical codes. 			
						hown as a case study in th lated in the same way.	ne previous slide	e. All other
NAICS codes	1	2	3	4	5	6	7	8
Direct Air Capture	Machinery manufact. (333)	Chemicals manufact. (325)	Support activities for mining ¹ (213)	Utilities (221)	Electrical equipment manufact. (335)	Oil and Gas Extraction (211)	-	-
Direct Ocean Capture	Machinery manufact. (333)	Chemicals manufact. (325)	Support activities for mining (213)	Utilities (221)	Electrical equipment manufact. (335)	Oil and Gas Extraction (211)	-	-
Ocean geochemical CDR	Mining (except Oil and Gas) (212)	Nonmetallic mineral product manufact. (327)	Support activities for mining (213)	Water transportation (483)	-	-	-	-
Carbon mineralization	Mining (except Oil and Gas) (212)	Nonmetallic mineral product manufact. (327)	Support activities for mining (213)	Machinery manufact. (333)	Electrical equipment manufact. (335)	Oil and Gas Extraction (211)	-	-
Terrestrial enhanced weathering (TEW)	Mining (except Oil and Gas) (212)	Nonmetallic mineral product manufact. (327)	Support activities for mining (213)	Support activities for agriculture and forestry (115)	-	-	-	-
Ocean biomass CDR	Aquaculture (1125)	Water transportation (483)	-	-	-	-	-	-
Terrestrial biomass CDR	Chemicals manufact. (325)	Support activities for agriculture and forestry (115)	Support activities for mining (213)	Construction of buildings (236)	Wood product manufact. (321)	Heavy and civil engineering construction (237)	Solid landfills (562212)	Forestry and logging (113)
Bioenergy + CCS	Machinery manufact. (333)	Chemicals manufact. (325)	Support activities for mining (213)	Utilities (221)	Electrical equipment manufact. (335)	Oil and Gas Extraction (211)	-	-

¹"Support activities for mining" is defined by the BLS as industries that provide support services required for mining and quarying of minerals as well as for the extraction of oil and gas. As a result, we included both support activities for mining and Quarying of minerals as well as for the extraction of oil and gas. As a result, we included both support activities for mining and Q&G for any approach that will need CO₂ pipeline infrastructure. For terrestrial biomass CDR, we include only support activities for mining, to account for jobs related to drilling wells that might be relevant for biomass injection. We did not also include O&G because largescale CO₂ infrastructure buildout is not necessary for this approach, especially for biochar and biomass burial.

Innovation Roadmap

16.0. Existing CDR HQs/Projects

DES	TYPE	CDR ecosystem in a st projects can clarify wh working towards deplo	the presence of an already exis ate. The presence of CDR HQs ich states have actors already ying CDR, clarifying permitting ducation campaigns, completir	or	data broa numl rathe	on HQs and projects d metric that include per of DAC HQs and	s within that buc s all types of CD projects in CA a I number of CDF	CDR bucket that includes ket rather than using one DR that exist in a state (i.e., total re included in the DAC bucket R HQs and projects in CA). Qs and projects.
				RATING DETA	ILS			
#	Metric		Units	Low	Medium	High	Weighting	Data Source
16.1	CDR HQs a	nd/or projects	# of HQs or projects	<33 rd percentile	33rd-66 th	>66 th percentile	100%	CDR.fyi, RMI Applied

percentile

CDR Approach Categories Methodology

A. Direct air capture (DAC)

NOTES

APPROACHES	Direct Air Capture
DESCRIPTION	The following weighting
	opportunity to deploy D/ state has taken to enabl

The following weighting was used to calculate a state's opportunity to deploy DAC as well as score the actions a state has taken to enable DAC buildout (or CDR buildout broadly).

DAC ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	20%
2.0	Supply/demand incentives	40%
3.0	Community engagement and Environmental justice	15%
4.0	CO ₂ regulatory clarity	25%

 Enabling policy metrics. Incentives to support deployment and demand are the most important policy blockers, followed by the slow pace of CO₂ infrastructure development due to permitting delays.

A. Direct Air Capture (DAC)

• **Opportunity metrics.** Clean energy availability and access to geologic storage suitable for CO₂ are primary constraints to DAC deployment. CO₂ infrastructure (e.g., existing pipelines and wells) is important but not as critical a constraint as many DAC projects will ideally co-locate with storage. Existing HQs/projects may enable scaling in a state.

DAC OPPORTUNITY

#	Metric category	Weighting
10.0	Clean energy availability	35%
13.0	CO ₂ geologic storage potential	35%
12.0	CO ₂ infrastructure	15%
15.0	Workforce relevance	10%
16.0	Existing HQs / projects	5%

B. Direct ocean capture (DOC)

APPROACHES C

CO₂ stripping

DESCRIPTION

The following weighting was used to calculate a state's opportunity to deploy DOC as well as score the actions a state has taken to enable DOC buildout (or CDR buildout broadly).

DOC ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	20%
2.0	Supply/demand incentives	20%
3.0	Community engagement and Environmental justice	30%
4.0	CO ₂ regulatory clarity	30%

NOTES

- Enabling policy metrics. A lack of regulatory clarity around permitting DOC projects and access to geologic storage are the two most critical policy barriers to DOC deployment.
- **Opportunity metrics.** Clean energy, access to geologic storage, and access to water are primary constraints to DOC deployment.

DOC OPPORTUNITY

#	Metric category	Weighting
8.0	Coastal access	20%
10.0	Clean energy availability	20%
13.0	CO ₂ geologic storage potential	20%
12.0	CO ₂ infrastructure	15%
14.0	Industrial integration (DOC)	10%
15.0	Workforce relevance	10%
16.0	Existing HQs / projects	5%

NOTES

C. Ocean geochemical CDR (gCDR)

APPROACHES

Coastal enhanced weathering, ocean alkalinity enhancement

DESCRIPTION

The following weighting was used to calculate a state's opportunity to deploy geochemical CDR approaches on the coast or in the ocean as well as score the actions a state has taken to enable this type of CDR deployment (or CDR buildout broadly).

OCEAN GCDR ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	35%
2.0	Supply/demand incentives	35%
3.0	Community engagement and Environmental justice	30%

• **Enabling policy metrics.** While demand support is critical for all CDR approaches, the lack of coastal regulations to clarify a permitting path for ocean geochemical projects is the most critical near-term barrier to deployment.

C. Ocean Geochemical CDR

 Opportunity metrics. States that create a clear permitting path for ocean geochemical and states that have mineral feedstock are both wellpositioned to support deployment.

OCEAN GCDR OPPORTUNITY

#	Metric category	Weighting
8.0	Coastal access	40%
11.0	Mineral feedstock accessibility	25%
14.0	Industrial integration	15%
15.0	Workforce relevance	15%
16.0	Existing HQs / projects	5%

D. Carbon mineralization

APPROACHES

DESCRIPTION

Surficial mineralization, ex-situ mineralization

The following weighting was used to calculate a state's opportunity to deploy surficial mineralization projects as well as score the actions a state has taken to enable this type of CDR deployment (or CDR buildout broadly).

CARBON MINERALIZATION ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	35%
2.0	Supply/demand incentives	40%
3.0	Community engagement and Environmental justice	25%

• Enabling policy metrics. Support for deployment and stimulating demand (metric category 2.0) are the most important roles for policy in this approach. Note that mine sites are promising locations for carbon mineralization and the Atlas does not yet reflect policy that more directly regulates the mining sector—this may be an important future addition.

NOTES

• **Opportunity metrics.** The availability of the right mineral feedstock and the presence of complementary industries (e.g., mining, which is often the feedstock source as well) are the most important factors in determining the most promising regions for deployment.

CARBON MINERALIZATION OPPORTUNITY

#	Metric category	Weighting
10.0	Clean energy availability	15%
11.0	Mineral feedstock accessibility	20%
12.0	CO2 infrastructure	15%
14.0	Industrial integration	40%
15.0	Workforce relevance	5%
16.0	Existing HQs / projects	5%

E. Terrestrial enhanced weathering (TEW)¹

APPROACHES

Terrestrial enhanced weathering (TEW)

DESCRIPTION

The following weighting was used to calculate a state's opportunity to deploy TEW projects as well as score the actions a state has taken to enable this type of CDR deployment (or CDR buildout broadly). This does not include coastal enhanced weathering (CEW) which is included in Ocean Geochemical CDR.

TEW ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	30%
2.0	Supply/demand incentives	40%
3.0	Community engagement and Environmental justice	30%

NOTES

- Enabling policy metrics. Support for deployment and stimulating demand (metric category 2.0) are the most important roles for policy in this approach. Note that farmland is the primary site for TEW, and the Atlas does not yet reflect policy that more directly regulates emissions from agriculture, which could be an important future addition.
- **Opportunity metrics.** The availability of the right mineral feedstock and the presence of an appropriate site (e.g., farmland) are the most important factors in determining the most promising regions for deployment.

TEW OPPORTUNITY

#	Metric category	Weighting
6.0	Farm coverage	40%
11.0	Mineral feedstock accessibility	30%
15.0	Workforce relevance	20%
16.0	Existing HQs / projects	10%

F. Ocean biomass CDR

APPROACHES

DESCRIPTION

Macroalgae and microalgae sinking

The following weighting was used to calculate a state's opportunity to deploy macroalgae and microalgae sinking projects as well as score the actions a state has taken to enable this type of CDR deployment (or CDR buildout broadly).

OCEAN BIOMASS STORAGE ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	35%
2.0	Supply/demand incentives	35%
3.0	Community engagement and Environmental justice	30%

NOTES

- Enabling policy metrics. Support for deployment and stimulating demand (metric category 2.0) are the most important roles for policy in this approach, but states that clarify rules around accessing coastline and coastal waters will be better positioned to support deployment.
- **Opportunity metrics.** Availability of feedstock and access to suitable waters for sinking are the most important opportunity factors. Note that some biomass sinking efforts use biogenic feedstocks other than micro-or macroalgae; these are not currently reflected in the Atlas.

OCEAN BIOMASS STORAGE OPPORTUNITY

#	Metric category	Weighting
7.0	Biomass availability (algae)	40%
8.0	Coastal access	40%
15.0	Workforce relevance	15%
16.0	Existing HQs / projects	5%

NOTES

APPROACHES

DESCRIPTION

Biochar, bio-oil, biomass burial, biomass building products

The following weighting was used to calculate a state's opportunity to deploy terrestrial biomass storage projects as well as score the actions a state has taken to enable this type of CDR deployment (or CDR buildout broadly).

- **Enabling policy metrics.** Support for deployment and stimulating demand (metric category 2.0) are the most important roles for policy in this approach, but states that make it easier to access geologic storage will be better positioned to support deployment.
 - **Opportunity metrics.** Availability of appropriate feedstock and access to suitable storage are the most important opportunity factors.

TERRESTRIAL BIOMASS STORAGE ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	35%
2.0	Supply/demand incentives	35%
3.0	Community engagement and Environmental justice	15%
5.0	Biomass injection well regulatory clarity	15%

TERRESTRIAL BIOMASS STORAGE OPPORTUNITY

#	Metric category	Weighting
7.0	Biomass availability (residue)	50%
9.0	Biomass injection well access	20%
15.0	Workforce relevance	20%
16.0	Existing HQs / projects	10%

G. Terrestrial biomass storage

H. Bioenergy + carbon capture and storage (BECCS)¹

NOTES

APPROACHES

BECCS to fuels, BECCS to electricity

DESCRIPTION The following weighting was used to calculate a state's opportunity to deploy BECCS projects as well as score the actions a state has taken to enable this type of CDR deployment (or CDR buildout broadly).

BECCS ENABLING POLICY

#	Metric category	Weighting
1.0	Climate governance	35%
2.0	Supply/demand incentives	35%
3.0	Community engagement and Environmental justice	15%
4.0	CO ₂ regulatory clarity ²	15%

• Enabling policy metrics. Support for deployment and stimulating demand (metric category 2.0) are the most important roles for policy in this approach, but states that make it easier to access geologic storage will be better positioned to support deployment.

 Opportunity metrics. Availability of appropriate feedstock, existing CO₂ infrastructure, and access to suitable storage are the most important opportunity factors.

BECCS OPPORTUNITY

#	Metric category	Weighting
7.0	Biomass availability (energy)	35%
12.0	CO ₂ infrastructure	30%
13.0	CO_2 geologic storage potential	25%
15.0	Workforce relevance	5%
16.0	Existing HQs / projects	5%